Answer:
true
Step-by-step explanation:
Answer:
We have the matrix ![A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%268%264%5Cend%7Barray%7D%5Cright%5D)
To find the eigenvalues of A we need find the zeros of the polynomial characteristic 
Then
![p(\lambda)=det(\left[\begin{array}{ccc}-4-\lambda&-4&-4\\0&-8-\lambda&-4\\0&8&4-\lambda\end{array}\right] )\\=(-4-\lambda)det(\left[\begin{array}{cc}-8-\lambda&-4\\8&4-\lambda\end{array}\right] )\\=(-4-\lambda)((-8-\lambda)(4-\lambda)+32)\\=-\lambda^3-8\lambda^2-16\lambda](https://tex.z-dn.net/?f=p%28%5Clambda%29%3Ddet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4-%5Clambda%26-4%26-4%5C%5C0%26-8-%5Clambda%26-4%5C%5C0%268%264-%5Clambda%5Cend%7Barray%7D%5Cright%5D%20%29%5C%5C%3D%28-4-%5Clambda%29det%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-8-%5Clambda%26-4%5C%5C8%264-%5Clambda%5Cend%7Barray%7D%5Cright%5D%20%29%5C%5C%3D%28-4-%5Clambda%29%28%28-8-%5Clambda%29%284-%5Clambda%29%2B32%29%5C%5C%3D-%5Clambda%5E3-8%5Clambda%5E2-16%5Clambda)
Now, we fin the zeros of
.

Then, the eigenvalues of A are
of multiplicity 1 and
of multiplicity 2.
Let's find the eigenspaces of A. For
:
.Then, we use row operations to find the echelon form of the matrix
![A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]\rightarrow\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%268%264%5Cend%7Barray%7D%5Cright%5D%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
We use backward substitution and we obtain
1.

2.

Therefore,

For
:
.Then, we use row operations to find the echelon form of the matrix
![A+4I_3=\left[\begin{array}{ccc}0&-4&-4\\0&-4&-4\\0&8&8\end{array}\right] \rightarrow\left[\begin{array}{ccc}0&-4&-4\\0&0&0\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A%2B4I_3%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-4%26-4%5C%5C0%26-4%26-4%5C%5C0%268%268%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-4%26-4%5C%5C0%260%260%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
We use backward substitution and we obtain
1.

Then,

12 x g + 1
Hope this help you
Answer:
Hopefully you can see your answer through this drawing
Step-by-step explanation:
<h3><u>Answer:</u></h3>
- <u>x </u><u>-</u><u> </u><u>8</u>
<h3><u>Solution</u><u>:</u></h3>
We are given a rectangle with one of its sides ( length ) equal to ( x - 7 ) Meters.
- Also we are given the area of the rectangle as x² - 15x + 56 square meters .
We have to find the expression for another side of the rectangle i.e it's width
We will use the formula of area of rectangle to find the expression :
- <u>A</u><u>rea </u><u>=</u><u> </u><u>length </u><u>×</u><u> </u><u>width</u>
Therefore,
ㅤㅤ➝ A = l × w
ㅤㅤ➝ x² - 15x + 56 = ( x - 7 ) × w
ㅤㅤ➝ x² - 8x -7x + 56 = ( x - 7 ) × w
ㅤㅤ➝ (x² - 8x )( - 7x + 56 ) = ( x-7 ) w
ㅤㅤ➝ x( x - 8 )-7( x - 8 ) = ( x - 7 )w
ㅤㅤ➝ ( x - 8 )( x - 7 ) = ( x - 7 )
ㅤㅤ➝ ( x - 8 )w = ( x - 8 )( x - 7 )
ㅤㅤ➝ w = ( x - 8 )( x - 7 ) / ( x - 7 )
ㅤㅤ➝ <u>w = ( x - 8 )</u>