Let "a" and "b" represent the values of the first and second purchases, respectively.
0.40*(original price of "a") = $10
(original price of "a") = $10/0.40 = $25.00 . . . . divide by 0.40 and evaluate
a = (original price of "a") - $10 . . . . . . Julia paid the price after the discount
a = $25.00 -10.00 = $15.00
At the other store,
$29 = 0.58b
$29/0.58 = b = $50 . . . . . . . divide by the coefficient of b and evaluate
Then Julia's total spending is
a + b = $15.00 +50.00 = $65.00
Julia spent $65 in all at the two stores.
Answer:
as shown in the attached file
Step-by-step explanation:
The detailed steps and application of differential equation, the use of integrating factor to generate the solution and to solve for the initial value problem is as shown in the attached file.
The accurate statement is the first one, which is "Igna read 4 times as many books as Gordon."
Mark brainliest if I helped you
Answer:
27
Step-by-step explanation:
Givens
b1 = 13
b2 = ?
h = 6
Area = 120
Formula
Area = (b1 + b2) * h/2 Multiply by 2
2Area = (b1 + b2)*h Divide by h
2Area/h = b1 + b2 Subtract b1 from both sides
2Area/h - b1 = b2
Solution
2*120 / 6 - 13 = b2
40 - 13 = b2
b2 = 27
It is always handy to solve an equation in the form that finds the unknown on one side. It makes the solution much easier.