1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dovator [93]
3 years ago
6

Can someone help me with these problems? I'm in k12 and this assignment was in classkick, so if anyone already completed this an

d can help, please do. I also am going to be asking some more questions, if you can help with those too. Thanks! (Will give brainliest.)
PLEASE HELP ME!

Mathematics
1 answer:
kherson [118]3 years ago
8 0

<em>                       </em><u><em>SOLVING QUESTIONS FROM 1ST PAGE</em></u>

  • Given the point B(-5, 0)

y = -3x - 5

Putting x = -5, and y = 0 in y = -3x - 5

0 = -3(-5) - 5

0 = 15 - 5

0 = 10         ∵Putting B(-5, 0) in y = -3x - 5 does not equate the equation.

As L.H.S ≠ R.H.S

So,

Does this check?

Answer: no        ∵ L.H.S ≠ R.H.S

  • Given the point C<em>(-2, 1)</em>

y = -3x - 5

Putting x = -2, and y = 1 in y = -3x - 5

1 = -3(-2) - 5

1 =  6 - 5

1 = 1         ∵Putting C(-2, 1) in y = -3x - 5 rightly equates the equation.

As L.H.S = R.H.S

So,

Does this check?

Answer: yes      ∵ L.H.S = R.H.S

  • Given the point D<em>(-1, -2)</em>

y = -3x - 5

Putting x = -1, and y = -2 in y = -3x - 5

-2 = -3(-1) - 5

-2 =  3 - 5

-2 = -2       ∵Putting D(-1, -2) in y = -3x - 5 rightly equates the equation.

As L.H.S = R.H.S

So,

Does this check?

Answer: yes       ∵ L.H.S = R.H.S

<em>                          </em><u><em>SOLVING QUESTIONS FROM 2ND PAGE</em></u>

  • Given the point B(6, 18)

y = -2x + 18

Putting x = 6, and y = 18 in y = -2x + 18

18 = -2(6) + 18

18 = -12 + 18

18 = 6         ∵Putting B(6, 18) in y = -2x + 18 does not equate the equation.

As L.H.S ≠ R.H.S

So,

Does this check?

Answer: no       ∵ L.H.S ≠ R.H.S

  • Given the point C(9, 24)

y = 2x + 6

Putting x = 9, and y = 24 in y = 2x + 6

24 = 2(9) + 6

24 = 18 + 6

24 = 24      ∵Putting C(9, 24) in y = 2x + 6 rightly equates the equation.

As L.H.S = R.H.S

So,

Does this check?

Answer: yes       ∵ L.H.S = R.H.S

<em>               </em><u><em>SOLVING QUESTIONS FROM 3RD PAGE</em></u>

  • Given the point D(2, 7)

y = 3x + 4

Putting x = 2, and y = 7 in y = 3x + 4

7 = 3(2) + 4

7 = 6 + 4

7 = 10         ∵Putting D(2, 7) in y = 3x + 4 does not equate the equation.

As L.H.S ≠ R.H.S

So,

Does this check?

Answer: no       ∵ L.H.S ≠ R.H.S

<em>                       </em><u><em>SOLVING QUESTIONS FROM 4th PAGE</em></u>

<em>b. Which function could have produced the values in the table.</em>

<em>A. y = 3x + 4                            </em>

<em>B. y = -2x + 18</em>

<em>C. y = 2x + 6</em>

<em>D. y = x + 9</em>

<em>The Table:</em>

<em>x             y</em>

3            12

6            18

9            24

<em>Checking A) y = 3x + 4</em>

<em>Putting (3, 12), (6, 18) and (9, 24) in y = 3x + 4</em>

For (3, 12)

y = 3x + 4

12 = 3(3) + 4

<em>12 = 13   </em>∵ L.H.S ≠ R.H.S

Does this check?

Answer: no       ∵ L.H.S ≠ R.H.S

For (6, 18)

18 = 3(6) + 4

18 = 18 + 4

<em>18 = 22   </em>∵ L.H.S ≠ R.H.S

Does this check?

Answer: no       ∵ L.H.S ≠ R.H.S

For (9, 24)

24 = 3(9) + 4

24 = 27 + 4

<em>24 = 31   </em>∵ L.H.S ≠ R.H.S

Does this check?

Answer: no       ∵ L.H.S ≠ R.H.S

So, the equation y = 3x + 4 could have not produced the all values in the table as the the ordered pairs in table do not satisfy(equate) the equation.

<em>Checking B) y = -2x + 18</em>

<em>Putting (3, 12), (6, 18) and (9, 24) in y = -2x + 18</em>

  • <em>For (3, 12) </em>⇒ y = -2x + 18 ⇒ 12 = -2(3) + 18 ⇒ 12 = 12 ⇒<em> L.H.S = R.HS</em>
  • <em>For (6, 18)</em> ⇒ y = -2x + 18 ⇒ 18 = -2(6) + 18 ⇒ 18 = 6 ⇒ <em>L.H.S ≠ R.HS</em>
  • <em>For (9, 24)</em> ⇒ y = -2x + 18 ⇒ 24 = -2(9) + 18 ⇒ 18 = 0 ⇒ <em>L.H.S ≠ R.HS</em>

So, y = -2x + 18 could have not produced all the values in the table, as (6, 18) does not equate the equation.

<em>Checking C) y = 2x + 6</em>

<em>Putting (3, 12), (6, 18) and (9, 24) in y = 2x + 6</em>

  • <em>For (3, 12) </em>⇒ y = 2x + 6 ⇒ 12 = 2(3) + 6 ⇒ 12 = 12 ⇒<em> L.H.S = R.HS</em>
  • <em>For (6, 18) </em>⇒ y = 2x + 6 ⇒ 18 = 2(6) + 6 ⇒ 18 = 18 ⇒<em> L.H.S = R.HS</em>
  • <em>For (9, 24) </em>⇒ y = 2x + 6 ⇒ 24 = 2(9) + 6 ⇒ 24 = 24 ⇒<em> L.H.S = R.HS</em>

So, y = 2x + 6 could have produced the values of in the table as all the orders pairs in the table satisfy/equate the equation.

<em>Checking D) y = x + 9</em>

<em>Putting (3, 12), (6, 18) and (9, 24) in y = x + 9</em>

  • <em>For (3, 12) </em>⇒ y = x + 9 ⇒ 12 = 3 + 9 ⇒ 12 = 12 ⇒<em> L.H.S = R.HS</em>
  • <em>For (6, 18) </em>⇒ y = x + 9 ⇒ 18 = 6 + 9 ⇒ 18 = 15 ⇒ <em>L.H.S ≠ R.HS</em>
  • <em>For (9, 24) </em>⇒ y = x + 9 ⇒ 24 = 9 + 9 ⇒ 24 = 18 ⇒<em> L.H.S ≠ R.HS</em>

So, y = x + 9 could have also not produced all the values in the table, as (6, 18) and (9, 24) do not satisfy/equate the equation.

So, from all the verification we conclude that:

<u>HENCE, ONLY </u><u>y = 2x + 6</u><u> COULD HAVE PRODUCED THE VALUES IN THE TABLE AS ALL THE ORDERED PAIRS OF THE TABLE SATISFY/EQUATE THE EQUATION.</u>

<em>                  </em><u><em>SOLVING QUESTIONS FROM 5th PAGE</em></u>

<em>What is the domain and range of the relation?</em>

{(-3, 7), (6, 2), (5, 1), (-9, -6)}

  • Domain: Domain is the set of all the x-coordinates of the ordered pairs of  the relation, meaning the all first elements of the ordered pairs in a relation include in the domain of the relation.
  • Range: Range is the set of all the y-coordinate of the ordered pairs of the relation, meaning the all second elements of the ordered pairs in a relation include in the range of the relation.

As the given relation is {(-3, 7), (6, 2), (5, 1), (-9, -6)}

The <em>domain</em> is: {-3, 6, 5, -9}

<em>Note: generally, we write the numbers in ascending order for both the domain and range.</em>

The domain could also be written in order as: {-9, -3, 5, 6}

The <em>range</em> is: {7, 2, 1, -6}

The range could also be written in order as: {-6, 1, 2, 7}

Keywords: equation, point, ordered pair, domain, range

Learn more about points and equation from brainly.com/question/12597810

<em>#learnwithBrainly</em>

You might be interested in
PLEASE ANSWER ASAP! NO EXPLANATION NEEDED!
adell [148]

Answer:

3/5

Step-by-step explanation:

you said I didn't need an explanation

5 0
3 years ago
Read 2 more answers
Idenify the numbers that are located below -3.5 on a vertical number line
belka [17]

A number line is just that – a straight, horizontal line with numbers placed at even increments along the length. The numbers that are located below -3.5 on a vertical number line are (-∞,-3.5).

<h3>What is a number line?</h3>

A number line is just that – a straight, horizontal line with numbers placed at even increments along the length. It’s not a ruler, so the space between each number doesn’t matter, but the numbers included on the line determine how it’s meant to be used.

The numbers that are located below -3.5 on a vertical number line are all the numbers that are less than -3.5. The numbers that are located below -3.5 on a vertical number line are (-∞,-3.5).

Learn more about the Number line:

brainly.com/question/557284

#SPJ1

6 0
2 years ago
Can someone explain the process of getting to Angle A? I know the answer is 44.1 but I need to show my work so can someone show
dsp73

Answer:

Step-by-step explanation:

First you have to calculate CB in order to use sin law to calculate ∠A

CB=\sqrt{18.4^{2} -13.2^{2} }

CB=12.8(correct to nearest tenth)

After that, use sin law to calculate ∠A,

\frac{18.4}{sin90} =\frac{12.8}{sinA}       or    \frac{sin90}{18.4} =\frac{sinA}{12.8}

sinA=0.695...

A=44.079...

  =44.1(corrext to the nearest tenth)

Is that clear enough for you?

4 0
2 years ago
Select the correct answer. A new building in the shape of a square pyramid is to be constructed. The slant height will be five t
marysya [2.9K]

From the information given about the square pyramid, the maximum base length of the building is 67.42 cm.

<h3>How do you determine the maximum side length?</h3>

We are given the following  details  are:

Base = b

Slant height (l) = 5b

The lateral surface area is calculated using:

L = 2bl

So, we have:

L = 2 * b * 5b

Evaluate the product

L = 10b²

The total surface area is calculated using:

T = L + b²

So, we have:

T = 10b² + b²

Evaluate the sum

T = 11b²

Recall that the maximum surface area is 50,000 square feet

So, we have:

11b² = 50000

Divide both sides by 11

b² = 50000/11

Taking the square root of both sides, we have

b = 67.42

Hence, the maximum base length of the building is 67.42 cm

Learn more about square pyramids at:

brainly.com/question/12146629

#SPJ1

8 0
2 years ago
A phone company worker needs to know the height of a cell tower, so he decides to use a 2 m pole and shadows cast by the sun, as
olganol [36]
I always found it easiest to draw out the picture 
6 0
3 years ago
Other questions:
  • Find two consecutive odd integers such that their product is 111 more than 3 times their sum​
    10·1 answer
  • about 50 percent of the population of Alaska lives within a 50 mile radius of Anchorage if the total area of Alaska is 580 6412
    9·1 answer
  • What is the constant term in the expression 8xy − 9x2 y − 5x + 6? −9 −5 6 8
    8·1 answer
  • Find the missing angle,x
    7·1 answer
  • If t-32 = 3-4, then t is
    6·1 answer
  • To solve this equation: d/5 + 12 = -15, which step will be performed last?
    5·1 answer
  • In a survey of 1000 adults, 34% found they prefer charcoal to gas grills. The 1000 would be considered a:
    6·1 answer
  • Is a=πd2 a area of a circle<br>​
    11·1 answer
  • Ramos spends $36.00 on a t-shirt and spends $20.00 on a hot dog.
    5·1 answer
  • Melanie saves $20 every month in her savings account. She withdrew $60 one time to go shopping. She now has $280 in her account.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!