Easy! multiply the 6% by $8 then add it to the $8, now, multiply the 15% by the total of the cost with tax. then you all that to the total. ($9.75)
Answer:
The difference in the sample proportions is not statistically significant at 0.05 significance level.
Step-by-step explanation:
Significance level is missing, it is α=0.05
Let p(public) be the proportion of alumni of the public university who attended at least one class reunion
p(private) be the proportion of alumni of the private university who attended at least one class reunion
Hypotheses are:
: p(public) = p(private)
: p(public) ≠ p(private)
The formula for the test statistic is given as:
z=
where
- p1 is the sample proportion of public university students who attended at least one class reunion (
)
- p2 is the sample proportion of private university students who attended at least one class reunion (
)
- p is the pool proportion of p1 and p2 (
)
- n1 is the sample size of the alumni from public university (1311)
- n2 is the sample size of the students from private university (1038)
Then z=
=-0.207
Since p-value of the test statistic is 0.836>0.05 we fail to reject the null hypothesis.
Answer:

Step-by-step explanation:






Answer:
Keenan's z-score was of 0.61.
Rachel's z-score was of 0.81.
Step-by-step explanation:
Z-score:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Keenan scored 80 points on an exam that had a mean score of 77 points and a standard deviation of 4.9 points.
This means that 
So



Keenan's z-score was of 0.61.
Rachel scored 78 points on an exam that had a mean score of 75 points and a standard deviation of 3.7 points.
This means that
. So



Rachel's z-score was of 0.81.