Answer:
a. 6.93 b. 5 c. 6.72 d. 3.46
Step-by-step explanation:
a. √4^2- 4(4)(-2)
Evaluate the power
√16-4×4(-2)
Multiply
√16-16(-2) = √16-(-32) = √16+32 Since 2 negatives equal a positive.
Add
√48
Find square root
√48= 6.92820323028-- rounded-- 6.93
b. √1^2-4(1)(-6)
Evaluate the power
√1-4(1)(-6)
Multiply
√1-(-24) = √1+24 Since 2 negatives equal a positive.
Add
√25
Find the square root
√25=5
c. √1^2-4(1)(-11)
Evaluate the power
√1-4(1)(-11)
Multiply
√1-(-44) = √1+44 Since 2 negative equal a positive.
Add
√45
Find the square root
√45= 6.7082039325-- rounded-- 6.72
d. √6^2-4(3)(2)
Evaluate the power
√36-4(3)(2)
Multiply
√36-24
Subtract
√12
Find the square root
√12= 3.46410161514-- rounded-- 3.46
Step-by-step explanation:
∫₋₂² (f(x) + 6) dx
Split the integral:
∫₋₂² f(x) dx + ∫₋₂² 6 dx
Graphically, if f(-x) = -f(x), then ∫₋₂² f(x) dx = 0. But we can also show this algebraically.
Split the first integral:
∫₋₂⁰ f(x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx
Using substitution, write the first integral in terms of -x.
∫₂⁰ f(-x) d(-x) + ∫₀² f(x) dx + ∫₋₂² 6 dx
-∫₂⁰ f(-x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx
Flip the limits and multiply by -1.
∫₀² f(-x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx
Rewrite f(-x) as -f(x).
∫₀² -f(x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx
-∫₀² f(x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx
The integrals cancel out:
∫₋₂² 6 dx
Evaluating:
6x |₋₂²
6 (2 − (-2))
24
Answer:
Sine - opposite : hypotenuse
Cosine - adjacent : hypotenuse
Tangent - opposite : adjacent
Cosecant - hypotenuse : opposite
Secant - hypotenuse : adjacent
Cotangent - adjacent : opposite
Answer:
I got 23 so I am not sure sorry