Answer:
x= 4
Step-by-step explanation:
How to solve your problem
Topics: Algebra
2=8−1⋅64⋅
2=8-1 \cdot \frac{6}{4} \cdot x
2=8−1⋅46⋅x
Solve
Divide the numbers
2=8−1⋅64⋅
2=8-1 \cdot {\color{#c92786}{\frac{6}{4}}} \cdot x
2=8−1⋅46⋅x
2=8−1⋅32
2=8-1 \cdot {\color{#c92786}{\frac{3}{2}}}x
2=8−1⋅23x
Multiply the numbers
2=8−1⋅32
2=8{\color{#c92786}{-1}} \cdot {\color{#c92786}{\frac{3}{2}}}x
2=8−1⋅23x
2=8−32
2=8{\color{#c92786}{-\frac{3}{2}}}x
2=8−23x
Combine multiplied terms into a single fraction
2=8−32
2=8-\frac{3}{2}x
2=8−23x
2=8+−3 2
2=8+\frac{-3x}{2}
2=8+2−3x
Find common denominator
2=8+−3 2
2=8+\frac{-3x}{2}
2=8+2−3x 2 =2⋅82+−3 2
2=\frac{2 \cdot 8}{2}+\frac{-3x}{2}
2=22⋅8+2−3x
Combine fractions with common denominator
2=2⋅82+−3 2
2=\frac{2 \cdot 8}{2}+\frac{-3x}{2}
2=22⋅8+2−3x
2=2⋅8−3 2
2=\frac{2 \cdot 8-3x}{2}
2=22⋅8−3x
Multiply the numbers
2=2⋅8-3 2
2=\frac{{\color{#c92786}{2}} \cdot {\color{#c92786}{8}}-3x}{2}
2=22⋅8−3x 2=16−3 2
2=\frac{{\color{#c92786}{16}}-3x}{2}
2=216−3x
Rearrange terms
2=16−3 2
2=\frac{{\color{#c92786}{16-3x}}}{2}
2=2 16−3x 2=−3+16 2
2=\frac{{\color{#c92786}{-3x+16}}}{2}
2=2−3x+16
Multiply all terms by the same value to eliminate fraction denominators
2=−3+16 2 2=\frac{-3x+16}{2}
2=2−3x+16
2⋅2=2(−3+16 2)
2 \cdot 2=2(\frac{-3x+16}{2})
2⋅2=2(2−3x+16)
Cancel multiplied terms that are in the denominator
2⋅2=2(−3+16 2)
2 \cdot 2=2(\frac{-3x+16}{2})
2⋅2=2(2−3x+16)
2⋅2=−3+16
2 \cdot 2=-3x+16
2⋅2=−3x+16
Multiply the numbers
2⋅2=−3+16
{\color{#c92786}{2}} \cdot {\color{#c92786}{2}}=-3x+16
2⋅2=−3x+16
4=−3+16
{\color{#c92786}{4}}=-3x+16
4=−3x+16
Subtract
16
from both sides of the equation
4=−3x+16
4−16=−3+16−16
4{\color{#c92786}{-16}}=-3x+16{\color{#c92786}{-16}}
4−16=−3x+16−16
Simplify
Subtract the numbers
−12=−3
Divide both sides of the equation by the same term
−12=−3
\frac{-12}{{\color{#c92786}{-3}}}=\frac{-3x}{{\color{#c92786}{-3}}}
−3−12=−3−3x
Simplify
Divide the numbers
Cancel terms that are in both the numerator and denominator
Move the variable to the left
= 4