Answer:
m<N = 76°
Step-by-step explanation:
Given:
∆JKL and ∆MNL are isosceles ∆ (isosceles ∆ has 2 equal sides).
m<J = 64° (given)
Required:
m<N
SOLUTION:
m<K = m<J (base angles of an isosceles ∆ are equal)
m<K = 64° (Substitution)
m<K + m<J + m<JLK = 180° (sum of ∆)
64° + 64° + m<JLK = 180° (substitution)
128° + m<JLK = 180°
subtract 128 from each side
m<JLK = 180° - 128°
m<JLK = 52°
In isosceles ∆MNL, m<MLN and <M are base angles of the ∆. Therefore, they are of equal measure.
Thus:
m<MLN = m<JKL (vertical angles are congruent)
m<MLN = 52°
m<M = m<MLN (base angles of isosceles ∆MNL)
m<M = 52° (substitution)
m<N + m<M° + m<MLN = 180° (Sum of ∆)
m<N + 52° + 52° = 180° (Substitution)
m<N + 104° = 180°
subtract 104 from each side
m<N = 180° - 104°
m<N = 76°
Answer is B because brick starts with a B
X, y - the numbers
The product is 18.

The quotient is 2.

Substitute 2y for x in the 1st equation:

The numbers are
6 and 3 or
-6 and -3.
Answer:
1.5 per hour : 1.2 per hour
Step-by-step explanation:
The computation of the ratio is shown below:
For norma, the one pool would be
= 12 pools ÷ 8 hours
= 1.5 per hour
And for albert, the one pool would be
= 9 pools ÷ 7.5 hours
= 1.2 per hour
So the ratio between them is
1.5 per hour : 1.2 per hour
Perimeter of rectangle = length + length + width + width
To find the combinations, think of two numbers that each multiplied by 2 and added up to give 12 or 14
Rectangle with perimeter 12
Say we take length = 2 and width = 3
Multiply the length by 2 = 2 × 2 = 4
Multiply the width by 3 = 2 × 3 = 6
Then add the answers = 4 + 6 = 10
This doesn't give us perimeter of 12 so we can't have the combination of length = 2 and width = 3
Take length = 4 and width = 2
Perimeter = 4+4+2+2 = 12
This is the first combination we can have
Take length = 5 and width = 1
Perimeter = 5+5+1+1 = 12
This is the second combination we can have
The question doesn't specify whether or not we are limited to use only integers, but if it is, we can only have two combinations of length and width that give perimeter of 12
length = 4 and width = 2
length = 5 and width = 1
--------------------------------------------------------------------------------------------------------------
Rectangle with perimeter of 14
Length = 4 and width = 3
Perimeter = 4+4+3+3 = 14
Length = 5 and width = 2
Perimeter = 5+5+2+2 = 14
Length = 6 and width = 1
Perimeter = 6+6+1+1 = 14
We can have 3 different combinations of length and width