<span>1/5(2x-15) + (3/5)x = 4 1/4
</span><span>x*2/5 - 15/5 + x*3/5 = 4 1/4
</span><span>x*2/5 - 3 + x*3/5 = 4 1/4
</span><span>x*(2/5+3/5) - 3 = 4 1/4
</span><span>x*(5/5) - 3 = 4 1/4
</span>1*x - 3 = 4 1/4
<span>x= 4 1/4 + 3
</span><span>x= 7 1/4 </span>
The correct answer is f=(1/3)m
Answer:
x1, x2 = 4.74 , -2.74
Step-by-step explanation:
To find the roots of a quadratic function we have to use the bhaskara formula
ax^2 + bx + c
x^2 - 2x - 13
a = 1 b = -2 c = -13
x1 = (-b + √ b^2 - 4ac)/2a
x2 =(-b - √ b^2 - 4ac)/2a
x1 = (2 + √ (2^2 - 4 * 1 * (-13)))/2 * 1
x1 = (2 + √ (4 + 52)) / 2
x1 = (2 + √ 56 ) / 2
x1 = (2 + 7.48) / 2
x1 = 9.48 / 2
x1 = 4.74
x2 = (2 - √ (2^2 - 4 * 1 * (-13)))/2 * 1
x2 = (2 - √ (4 + 52)) / 2
x2 = (2 - √ 56 ) / 2
x2 = (2 - 7.48) / 2
x2 = -5.48 / 2
x2 = -2.74
To solve, simply do this:

Then you'll get the answer, -7/16