The flat sheet will completely rust before the iron cube. Since they both have the same volume, the flat sheet has more surface area than the small cube. This means more particles are exposed on the flat sheet that can react in a chemical reaction.
Pure oreo would be a mixture
Answer:
For eacht 4 moles Fe consumed, we will produce 2 moles Fe2O3
The mole ration is 4:2 (option 1)
Explanation:
Step 1: The unbalanced equation
Fe + O2 → Fe2O3
Step 2: Balancing the equation
Fe + O2 → Fe2O3
On the left side we have 2x O (in O2) and on the right side we have 3x O (in Fe2O3) . To balance the amount of O on both sides, we have to multiply O2 by 3 and Fe2O3 by 2.
Fe + 3O2 → 2Fe2O3
On the left side we have 1x Fe, On the right side we have 4x (in 2Fe2O3). To balance the amount of Fe we have to multiply Fe (on the left side) by 4.
Now the equation is balanced.
4Fe + 3O2 → 2Fe2O3
For eacht 4 moles Fe consumed, we will produce 2 moles Fe2O3
The mole ration is 4:2 (option 1)
Answer:
0.32 M
Explanation:
Step 1: Write the balanced reaction at equilibrium
Ag₂S(s) ⇌ 2 Ag⁺(aq) + S²⁻(aq)
Step 2: Calculate the concentration of Ag⁺ at equilibrium
We will use the formula for the concentration equilibrium constant (Keq), which is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It only includes gases and aqueous species.
Keq = [Ag⁺]² × [S²⁻]
[Ag⁺] = √{Keq / [S²⁻]}
[Ag⁺] = √{2.4 × 10⁻⁴ / 0.0023} = 0.32 M
Hydrogen bonds are present in the following molecules: HF AND NH3
Dipole dipole inter molecular forces occurs the molecules of H2S AND H2.
Hydrogen bonding is an electrostatic attraction between two polar groups that occur when hydrogen atom covalently bound with highly electronegative atoms.