<span>What is the value of x in the proportion x + 1 / x+3 = 15/ 21
a.4
b.1/3
c.1/4
d.3</span>
the answer is
a.) 4
first off, is noteworthy that's the graph of an exponential function, thus the function will be along the lines of g(x) = abˣ , now, what's "a" and "b" values?
well, let's take a peek when x = 0 and x = 1.
![\bf g(x) = ab^x \\\\[-0.35em] ~\dotfill\\\\ \begin{cases} x = 0\\ y = 1 \end{cases}\implies 1=ab^0\implies 1=a(1)\implies \boxed{1=a} \\\\[-0.35em] ~\dotfill\\\\ \begin{cases} x = 1\\ y = 4 \end{cases}\implies 4 = ab^1\implies 4=1b^1\implies \boxed{4=b} \\\\[-0.35em] ~\dotfill\\\\ ~\hfill g(x) = 4^x\qquad \qquad \qquad \begin{array}{|c|c|ll} \cline{1-2} x&y\\ \cline{1-2} -2&\frac{1}{4^2}\to \frac{1}{16}\\ -1&\frac{1}{4}\\ 0&1\\ 1&4\\ 2&16\\ \cline{1-2} \end{array}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20g%28x%29%20%3D%20ab%5Ex%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20x%20%3D%200%5C%5C%20y%20%3D%201%20%5Cend%7Bcases%7D%5Cimplies%201%3Dab%5E0%5Cimplies%201%3Da%281%29%5Cimplies%20%5Cboxed%7B1%3Da%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20x%20%3D%201%5C%5C%20y%20%3D%204%20%5Cend%7Bcases%7D%5Cimplies%204%20%3D%20ab%5E1%5Cimplies%204%3D1b%5E1%5Cimplies%20%5Cboxed%7B4%3Db%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20g%28x%29%20%3D%204%5Ex%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cbegin%7Barray%7D%7B%7Cc%7Cc%7Cll%7D%20%5Ccline%7B1-2%7D%20x%26y%5C%5C%20%5Ccline%7B1-2%7D%20-2%26%5Cfrac%7B1%7D%7B4%5E2%7D%5Cto%20%5Cfrac%7B1%7D%7B16%7D%5C%5C%20-1%26%5Cfrac%7B1%7D%7B4%7D%5C%5C%200%261%5C%5C%201%264%5C%5C%202%2616%5C%5C%20%5Ccline%7B1-2%7D%20%5Cend%7Barray%7D~%5Chfill)
Answer:
The graph is symmetric about the origin.
The graph does not pass through the origin.
Step-by-step explanation:
We're given:
- the function y=axn
- a = 1
- n is odd
Because a = 1, then the given function can be rewritten as y = n.
The function y = n will produce a horizontal line. Any function in the form of y = a single number, such as 4 or 9.3 will produce a horizontal line.
- The graph is symmetric about the origin.
This is true, given the graph is a horizontal line.
- The graph does not pass through the origin.
This is also true. We're given that n is an odd number. The graph will only pass through the origin if n = 0, and 0 is even.
- The graph has more than one x-intercept.
This would only be true when n = 0, and this isn't possible. So, no.