1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wittaler [7]
3 years ago
8

What is the length of the diagonal for the given rectangular prism to the nearest whole unit?

Mathematics
1 answer:
klemol [59]3 years ago
6 0
Length of the diagonal : D. 12 cm

The space diagonal of a rectangular prism is derived using the following formula:

d = √(l² + w² + h²)

l = 6; w = 5; h = 9
d = √6² + 5² + 9²
d = √36 + 25 + 81
d = √142
d = 11.916 ⇒ 12 cm

slant height of the given pyramid : 

l = slant height
h = height
a = base radius

l = √h² + a²

i'm assuming that the pyramid base is also the base radius
l = √8² + 12²
l = √64 + 144
l = √208
I = 14.42 ⇒ 14cm

in the event that the pyramid base is not the radius, then 12/2; 6cm
l = √8² + 6²
l = √64 + 36
l = √100
l = 10 cm
You might be interested in
The slope-intercept form of the equation of a line that passes through point (–3, 8) is y = –x + 6. What is the point-slope form
Kisachek [45]

Answer:

-1

Step-by-step explanation:

y = -x + 6 the number in front of x is the point slope

so, the answer is -1 because the number in front of x is -1

6 0
3 years ago
40 pints of juice in 2 containers​
mezya [45]

Answer:

Ok

Step-by-step explanation:

5 0
3 years ago
7t=x,for t .what is the formula
Andrei [34K]

The formula for t would be x/7.

In order to find this, we simply follow the order of operations to solve for t.

7t = x ----> Divide both sides by 7

t = x/7

6 0
3 years ago
What is the area of the triangle?
11Alexandr11 [23.1K]
Its 2 long sides and one long side so its B 
8 0
3 years ago
Solve the following systems of equations using the matrix method: a. 3x1 + 2x2 + 4x3 = 5 2x1 + 5x2 + 3x3 = 17 7x1 + 2x2 + 2x3 =
lara [203]

Answer:

a. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

Step-by-step explanation:

Solving a system of linear equations using matrix method, we may define a system of equations with the same number of equations as variables as:

A\cdot X=B

where X is the matrix representing the variables of the system,  B is the matrix representing the constants, and A is the coefficient matrix.

Then the solution is this:

X=A^{-1}B

a. Given the system:

3x_1 + 2x_2 + 4x_3 = 5 \\2x_1 + 5x_2 + 3x_3 = 17 \\7x_1 + 2x_2 + 2x_3 = 11

The coefficient matrix is:

A=\left[\begin{array}{ccc}3&2&4\\2&5&3\\7&2&2\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}5&17&11\\\end{array}\right]

First, we need to find the inverse of the A matrix. To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be inverse matrix.

So, augment the matrix with identity matrix:

\left[ \begin{array}{ccc|ccc}3&2&4&1&0&0 \\\\ 2&5&3&0&1&0 \\\\ 7&2&2&0&0&1\end{array}\right]

This matrix can be transformed by a sequence of elementary row operations to the matrix

\left[ \begin{array}{ccc|ccc}1&0&0&- \frac{2}{39}&- \frac{2}{39}&\frac{7}{39} \\\\ 0&1&0&- \frac{17}{78}&\frac{11}{39}&\frac{1}{78} \\\\ 0&0&1&\frac{31}{78}&- \frac{4}{39}&- \frac{11}{78}\end{array}\right]

And the inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right]

Next, multiply A^ {-1} by B

X=A^{-1}\cdot B

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\left[ \begin{array}{ccc} - \frac{2}{39} & - \frac{2}{39} & \frac{7}{39} \\\\ - \frac{17}{78} & \frac{11}{39} & \frac{1}{78} \\\\ \frac{31}{78} & - \frac{4}{39} & - \frac{11}{78} \end{array} \right] \cdot \left[\begin{array}{c}5&17&11\end{array}\right]

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}-\frac{2}{39}&-\frac{2}{39}&\frac{7}{39}\\ -\frac{17}{78}&\frac{11}{39}&\frac{1}{78}\\ \frac{31}{78}&-\frac{4}{39}&-\frac{11}{78}\end{pmatrix}\begin{pmatrix}5\\ 17\\ 11\end{pmatrix}=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3\\\end{array}\right]=\begin{pmatrix}\frac{11}{13}\\ \frac{50}{13}\\ -\frac{17}{13}\end{pmatrix}

b. To solve this system of equations

x -y - z = 0 \\30x + 40y = 12 \\30x + 50z = 12

The coefficient matrix is:

A=\left[\begin{array}{ccc}1&-1&-1\\30&40&0\\30&0&50\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x&y&z\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&12&12\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{ccc} \frac{20}{47} & \frac{1}{94} & \frac{2}{235} \\\\ - \frac{15}{47} & \frac{4}{235} & - \frac{3}{470} \\\\ - \frac{12}{47} & - \frac{3}{470} & \frac{7}{470} \end{array} \right]

The solutions are

\left[\begin{array}{c}x&y&z\\\end{array}\right]=\begin{pmatrix}\frac{54}{235}\\ \frac{6}{47}\\ \frac{24}{235}\end{pmatrix}

c. To solve this system of equations

4x_1 + 2x_2 + x_3 + 5x_4 = 0 \\3x_1 + x_2 + 4x_3 + 7x_4 = 1\\ 2x_1 + 3x_2 + x_3 + 6x_4 = 1 \\3x_1 + x_2 + x_3 + 3x_4 = 4\\

The coefficient matrix is:

A=\left[\begin{array}{cccc}4&2&1&5\\3&1&4&7\\2&3&1&6\\3&1&1&3\end{array}\right]

The variable matrix is:

X=\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]

The constant matrix is:

B=\left[\begin{array}{c}0&1&1&4\\\end{array}\right]

The inverse of the A matrix is

A^{-1}=\left[ \begin{array}{cccc} - \frac{1}{9} & - \frac{1}{9} & - \frac{1}{9} & \frac{2}{3} \\\\ - \frac{32}{9} & - \frac{5}{9} & \frac{13}{9} & \frac{13}{3} \\\\ - \frac{28}{9} & - \frac{1}{9} & \frac{8}{9} & \frac{11}{3} \\\\ \frac{7}{3} & \frac{1}{3} & - \frac{2}{3} & -3 \end{array} \right]

The solutions are

\left[\begin{array}{c}x_1&x_2&x_3&x_4\\\end{array}\right]=\begin{pmatrix}\frac{22}{9}\\ \frac{164}{9}\\ \frac{139}{9}\\ -\frac{37}{3}\end{pmatrix}

7 0
3 years ago
Read 2 more answers
Other questions:
  • 1. Which words represent ADDITION<br> less than<br> sum<br> more than<br> times
    11·1 answer
  • The total cost of eight pens and five mechanical pencils is $8.55. The cost of each pencil is $0.35 cents. Let the cost of a pen
    5·1 answer
  • Please Help
    7·1 answer
  • Find the slope of the line that passes through (10,9) and (1,5)​
    15·2 answers
  • Do you like my drawings
    14·2 answers
  • In ΔGHI, h = 990 inches, g = 910 inches and ∠G=53°. Find all possible values of ∠H, to the nearest degree
    11·2 answers
  • Find the slope for this relatioonship
    6·1 answer
  • Define bartering. Exchanging goods or services directly, without a medium of exchange.
    6·1 answer
  • Please help me out ?
    13·1 answer
  • How many two digit numbers have on odd digit and one evan digit?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!