Answer:
Solution given:
b=9 base side of isosceles triangle
a=
You subtract the ones place, then the tens, and lastly the hundreds place. Your answer will be 184 if you are looking for the answer as well.
Step-by-step explanation:
y = 3 + 8x^(³/₂), 0 ≤ x ≤ 1
dy/dx = 12√x
Arc length is:
s = ∫ ds
s = ∫₀¹ √(1 + (dy/dx)²) dx
s = ∫₀¹ √(1 + (12√x)²) dx
s = ∫₀¹ √(1 + 144x) dx
If u = 1 + 144x, then du = 144 dx.
s = 1/144 ∫ √u du
s = 1/144 (⅔ u^(³/₂))
s = 1/216 u^(³/₂)
Substitute back:
s = 1/216 (1 + 144x)^(³/₂)
Evaluate between x=0 and x=1.
s = [1/216 (1 + 144)^(³/₂)] − [1/216 (1 + 0)^(³/₂)]
s = 1/216 (145)^(³/₂) − 1/216
s = (145√145 − 1) / 216
1/4 I think because you would limit the eights