1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
3 years ago
8

Find the circumference and area of a circlewith a radius of 5 feet.​

Mathematics
1 answer:
iVinArrow [24]3 years ago
4 0

Circumference = 2(pi)r

Area = (pi)r^2

r = 5

5 * 2 = 10

Circumference = 10π

5 * 5 = 25

Area = 25π

Using 3.14 as pi substitute:

5 * 3.14 = 15.7

15.7 * 2 = 31.4

Circumference = 31.4

5 * 5 = 25

25 * 3.14 = 78.5

Area = 78.5

You might be interested in
For a circle with a radius of 6 meters, what is the measurement of a central angle (in degrees) subtended by an arc with a lengt
lesantik [10]
I hope this helps you




Arc length = central angle/360.2pi.r


7/3pi=?/360.2pi.6


?=7.10


?=70
8 0
3 years ago
Read 2 more answers
Wich expression is equivalent to 36a- 54b
Crazy boy [7]

Answer:

Top answer · 16 votes

A. 9(4a-3)Distribute to each term inside parentheses.  

Step-by-step explanation:

5 0
3 years ago
A study of the amount of time it takes a mechanic to rebuild the transmission for a 1992 Chevrolet Cavalier shows that the mean
EastWind [94]

Using the normal distribution, it is found that 7.64% of of sample means are greater than 8.8 hours.

<h3>Normal Probability Distribution</h3>

The z-score of a measure X of a normally distributed variable with mean \mu and standard deviation \sigma is given by:

Z = \frac{X - \mu}{\sigma}

  • The z-score measures how many standard deviations the measure is above or below the mean.
  • Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
  • By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation s = \frac{\sigma}{\sqrt{n}}.

The parameters are given as follows:

\mu = 8.4, \sigma = 1.77, n = 40, s = \frac{1.77}{\sqrt{40}} = 0.2799

The proportion of sample means greater than 8.8 hours is <u>one subtracted by the p-value of Z when X = 8.8</u>, hence:

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{8.8 - 8.4}{0.2799}

Z = 1.43

Z = 1.43 has a p-value of 0.9236.

1 - 0.9236 = 0.0764.

7.64% of of sample means are greater than 8.8 hours.

More can be learned about the normal distribution at brainly.com/question/25800303

#SPJ1

6 0
2 years ago
What is the area of a circle with a radius of 43 cm? Use 3.14 for π and round your answer to the nearest hundredth.
amm1812
<span>I think your answer would be 270.04:)
Hope this helps:)
</span>
6 0
3 years ago
In the diagram above (not to scale), Vx/y = 12.57 meters/second and
EastWind [94]
The first vector's speed is 12.57 meters for one second
The second vector's speed is 5.21 meters for one second
The total distance is 12.57+5.21 = 17.78 meters over two seconds
Hence the speed is 17.78 / 2 = 8.89m/s
8 0
3 years ago
Read 2 more answers
Other questions:
  • Given that f(x)=x^2-4x -3 and g(x)=x+3/4 solve for f(g(x)) when x=9
    8·1 answer
  • -5=3/4x-2 solve for x and please show your work!
    5·1 answer
  • In order to determine the number of squirrels in a conservation area, a researcher catches, and marks 114 squirrels then release
    13·1 answer
  • How many times larger is 2 x 1012 than 5 x 106?
    11·1 answer
  • If the interest on $2000 for 2 years is $320, then what is the interest rate?
    13·1 answer
  • Given B = {a, l, g, e, b, r} and C = {m, y, t, h}, find B ∪ C. {} {a} {a, b, e, g, h, l, m, r, t, y}
    10·2 answers
  • Solve the Antiderivative.​
    13·1 answer
  • If y varies inversely as x and y = 9 when x = 4, find y when x = 6.
    12·1 answer
  • Please help me with this it's my last question on my homework :)
    9·2 answers
  • What number equals 100 when it’s squared ?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!