The shortest distance between the tip of the cone and its rim exits 51.11cm.
<h3>
What is the shortest distance between the tip of the cone and its rim?</h3>
If you draw a line along the middle of the cone, you'd finish up with two right triangles and the line even bisects the angle between the sloping sides. The shortest distance between the tip of the cone and its rim exists in the hypotenuse of a right triangle with one angle calculating 38.5°. So, utilizing trigonometry and allowing x as the measurement of the shortest distance between the tip of the cone and its rim.
Cos 38.5 = 40 / x
Solving the value of x, we get
Multiply both sides by x


Divide both sides by 

simplifying the above equation, we get

x = 51.11cm
The shortest distance between the tip of the cone and its rim exits 51.11cm.
To learn more about right triangles refer to:
brainly.com/question/12111621
#SPJ9
The area between the two functions is 0
<h3>How to determine the area?</h3>
The functions are given as:
f₁(x)= 1
f₂(x) = |x - 2|
x ∈ [0, 4]
The area between the functions is
A = ∫[f₂(x) - f₁(x) ] dx
The above integral becomes
A = ∫|x - 2| - 1 dx (0 to 4)
When the above is integrated, we have:
A = [(|x - 2|(x - 2))/2 - x] (0 to 4)
Expand the above integral
A = [(|4 - 2|(4 - 2))/2 - 4] - [(|0 - 2|(0 - 2))/2 - 0]
This gives
A = [2 - 4] - [-2- 0]
Evaluate the expression
A = 0
Hence, the area between the two functions is 0
Read more about areas at:
brainly.com/question/14115342
#SPJ1
3.option a (-8,2)
4.option b (5,4)