Answer:
top row on 9 page; 9) 53/5 10) 26/4 11) 37/4
bottom row on 9 page; 9) 8 and 1/7 10) 6 and 3/4 11) 1 and 1/3
top row on 3 page; 3) 2 and 2/7 4) 5 and 3/4 5) 8 and 1/10
bottom row on 3 page; 3) 4/3 4) 3/2 5) 12/5
top row on 12 page; 12) 21/10 13) 62/6 14) 57/6
bottom row on 12 page; 12) 1 and 9/10 13) 10 and 1/2 14) 3 and 3/8
Step-by-step explanation:
You never specified if these had to be simplified or turned into a fraction, so I just simplified them. That's about it.
I hope this helps :)
Answer:
The side C equals to 10. hence the answer is letter A
Step-by-step explanation:
To solve this, we need to use trigonometric functions.
we know that sin (α) = Lo / H for a triangle. Being Lo : Length of the opposite side and H: Length of the hypotenuse.
Given α= 45º and Lo= 5√2 and replacing in the equation:
sin (45º) = 5√2 / C (1)
Using trigonometric identities we know that sin(45º) =(√2)/2. Replacing in equation (1):
sin (45º) = (√2)/2 = 5√2 / C ⇒ C = 2 *5 *√2 / (√2) ⇒ C=10
<u>Answer</u>
The first student was right.
The length of the long side is at least 13 inches.
<u>Explanation</u>
The perimeter of any figure is the distance all round.
Perimeter of a rectangle = 2(l+w). Where l is length and w is the width.
2(l + w) ≥ 30
2{(x-3) + 2} ≥ 30
2(x-3+2) = 30
2(x - 1) ≥ 30
x - 1 ≥ 15
x ≥ 16
When x = 16,
l = 16-3
= 13 inches
The length of the long side is 13 inches. The first student was right.
Answer:
3 11/20
Step-by-step explanation:
Total gallons of water=7
Spring water=two and one-fourth gallon=2 1/4
Filtered water=one and one-fifth
=1 1/5
Spring water+filtered water=2 1/4 + 1 1/5
=9/4+6/5
= 45+24/20
=69/20
=3 9/20
How many gallons of water were not spring or filtered
=Total gallons- (spring+ filtered water)
=7-69/20
=140-69/20
=71/20
=3 11/20
For this case we give as data the following equation:

Where "x" represents the cost of a ticket.
By clearing the value of "x" of the equation we can know the cost of a ticket.
If we subtract 12 from both sides of the equation, we have:

If we divide between 4 on both sides of the equation:

Therefore, the cost of a ticket is $ 9.00
Answer:
Option C