To compare the two classes, the Coefficient of Variation (COV) can be used. The formula for COV is this:
C = s / x
where s is the standard deviation and x is the mean
For the first class:
C1 = 10.2 / 75.5
C1 = 0.1351 (13.51%)
For the second class:
C2 = 22.5 / 75.5
C2 = 0.2980 (29.80%)
The COV is a test of homogeneity. Looking at the values, the first class has more students having a grade closer to the average than the second class.
2 times 108 is 216
3 times 72 is 216
4 times 54 is 216
6 times 36 is 216
The last two easy transformations involve flipping functions upside down (flipping them around the x-axis), and mirroring them in the y-axis.
The first, flipping upside down, is found by taking the negative of the original function; that is, the rule for this transformation is –f (x).
We have been given that a geometric sequence's 1st term is equal to 1 and the common ratio is 6. We are asked to find the domain for n.
We know that a geometric sequence is in form
, where,
= nth term of sequence,
= 1st term of sequence,
r = Common ratio,
n = Number of terms in a sequence.
Upon substituting our given values in geometric sequence formula, we will get:

Our sequence is defined for all integers such that n is greater than or equal to 1.
Therefore, domain for n is all integers, where
.
Answer:
6 toppings
Step-by-step explanation:
The t in this equation represents the amount of toppings.
22 + 0.65t = 26
-22 -22
0.65t = 4
0.65t/0.65 = 4/0.65
t = 6
They could get 6 toppings and the total would be $25.90.