The dimension of a line is one dimension.
Answer:
Since Darcie wants to crochet a minimum of 3 blankets and she crochets at a rate of 1/5 blanket per day, we can determine how many days she will need to crochet a minimum of 3 blankets following the next steps:
- Finding the number of days needed to crochet one (1) blanket:
\begin{gathered}1=\frac{1}{5}Crochet(Day)\\Crochet(Day)=5*1=5\end{gathered}
1=
5
1
Crochet(Day)
Crochet(Day)=5∗1=5
So, she can crochet 1 blanket every 5 days.
- Finding the number of days needed to crochet three (3) blankets:
If she needs 5 days to crochet 1 blanket, to crochet 3 blankets she will need 15 days because:
\begin{gathered}DaysNeeded=\frac{NumberOfBlankets}{Rate}\\\\DaysNeeded=\frac{3}{\frac{1}{5}}=3*5=15\end{gathered}
DaysNeeded=
Rate
NumberOfBlankets
DaysNeeded=
5
1
3
=3∗5=15
- Writing the inequality
If she has 60 days to crochet a minimum of 3 blankets but she can complete it in 15 days, she can skip crocheting 45 days because:
AvailableDays=60-RequiredDaysAvailableDays=60−RequiredDays
AvailableDays=60-15=45DaysAvailableDays=60−15=45Days
So, the inequality will be:
s\leq 45s≤45
The inequality means that she can skip crocheting a maximum of 45 days since she needs 15 days to crochet a minimum of 3 blankets.
Have a nice day!
for the implicit integration I got:

the vertical tangent would at points at which y' goes to infinity.
that happen when the right-hand side has singularities, that is, the denominator is 0:

so the two points y above have a vertical tangent.
<span>potential; kinetic is the answer.</span>
Answer: There are 20 students and 4 students are not here today.
Step-by-step explanation:
If the number of students = 4
Let the number of students be 'x'.
Fraction of students absent = 
If the number of students = 5
Fraction of students absent = 
And Jen came back,
So, the fraction of student absent is also written as

According to question, it becomes,

Hence, there are 20 students in our school.
And number of students are not here today is 