1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulsSmile [24]
3 years ago
12

Given ADC ACB and BDC BCA prove a squared + b squared = c squared. Use the two Column proof.

Mathematics
1 answer:
Yuri [45]3 years ago
7 0

Answer:

a²  + b²  = c · (e + d) =  c × c = c²

a²  + b²  = c²

Please see attachment

Step-by-step explanation:

Statement,                                                        Reason

ΔADC ~ ΔACB,          Given

AC/AD = BA/AC,        The ratio of corresponding sides of similar triangles

b/e = c/b

b² = c·e

ΔBDC ~ ΔBCA,           Given

BC/BA =  BD/BC,        The ratio of corresponding sides of similar triangles

a/c = d/a        

a² = c·d

a²  + b²   = c·e + c·d

a²  + b²   = c · (e + d)

e + d = c,                       Addition of segment

a²  + b²   = c × c = c²

Therefore, a²  + b²   = c²

You might be interested in
PLSSS I NEED HELP i will give you 50 points
DIA [1.3K]

Answer:

131.2

Step-by-step explanation:

x/55=31/14

x=31/13*55

x=131.153846154

4 0
3 years ago
Genevieve is 3 years older than twice her brother’s age. Genevieve is 21 years old. Write an equation to find her brother’s age.
Simora [160]

Answer:

her brother is 9

Step-by-step explanation:

21-3=18   18 divided by 2 = 9

7 0
3 years ago
Read 2 more answers
Question regarding logarithms.
Eddi Din [679]

5^{x-2}-7^{x-3}=7^{x-5}+11\cdot5^{x-4}\\\\5^{x-2}-7^{x-2-1}=7^{x-2-3}+11\cdot5^{x-2-2}\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\5^{x-2}-\dfrac{7^{x-2}}{7^1}=\dfrac{7^{x-2}}{7^3}+11\cdot\dfrac{5^{x-2}}{5^2}\\\\5^{x-2}-\dfrac{1}{7}\cdot7^{x-2}=\dfrac{1}{343}\cdot7^{x-2}+\dfrac{11}{25}\cdot5^{x-2}\\\\-\dfrac{1}{7}\cdot7^{x-2}-\dfrac{1}{343}\cdot7^{x-2}=\dfrac{11}{25}\cdot5^{x-2}-5^{x-2}\\\\\left(-\dfrac{1}{7}-\dfrac{1}{343}\right)\cdot7^{x-2}=\left(\dfrac{11}{25}-1\right)\cdot5^{x-2}

\left(-\dfrac{49}{343}-\dfrac{1}{343}\right)\cdot7^{x-2}=-\dfrac{14}{25}\cdot5^{x-2}\\\\-\dfrac{50}{343}\cdot7^{x-2}=-\dfrac{14}{25}\cdot5^{x-2}\qquad\text{multiply both sides by}\ \left(-\dfrac{25}{14}\right)\\\\\dfrac{50\cdot25}{343\cdot14}\cdot7^{x-2}=5^{x-2}\qquad\text{divide both sides by}\ 7^{x-2}\\\\\dfrac{25\cdot25}{343\cdot7}=\dfrac{5^{x-2}}{7^{x-2}}\qquad\text{use}\ \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}

\dfrac{5^2\cdot5^2}{7^3\cdot7}=\left(\dfrac{5}{7}\right)^{x-2}\qquad\text{use}\ a^n\cdot a^m=a^{n+m}\\\\\dfrac{5^4}{7^4}=\left(\dfrac{5}{7}\right)^{x-2}\\\\\left(\dfrac{5}{7}\right)^4=\left(\dfrac{5}{7}\right)^{x-2}\iff x-2=4\qquad\text{add 2 to both sides}\\\\\boxed{x=6}

6 0
3 years ago
Read 2 more answers
A. C+7&lt;_3<br> B. C - 3 &gt; 1<br> C. C - 7&lt; 3
olga_2 [115]

c + 7 <  3
8 0
3 years ago
Check out attachment:) I don't understand how do you find out the length ?? pls help with explanation thx
hjlf

Answer:

x=3.89

Step-by-step explanation:

I'll go in depth for you.

Before we figure out what we do, let understand what we know about this triangle.

  • We know that both triangles have a angle that measure 27°.
  • We also know EH=5
  • FG=9
  • ZG=7
  • We need to know how to find EZ

Notice how line EG and HF intersect at Angle Z. We know that if two lines intersect at an angle, it form angles called vertical angles. This means that the two angles that are vertical to each other are congruent.

This means that angle Z in both triangles both measure the same.

Now since both triangles have 2 congruent corresponding angles, we can say that the <em>Triangles</em><em> </em><em>are</em><em> </em><em>Similar</em><em> </em><em>due</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>Angle-Angle</em><em> </em><em>Postulate</em><em>.</em>

<em>"</em><em>If</em><em> </em><em>two</em><em> </em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>of</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>congruent</em><em>,</em><em> </em><em>then</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>.</em><em>"</em>

<em>What</em><em> </em><em>is</em><em> </em><em>mean</em><em> </em><em>when</em><em> </em><em>Triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>?</em><em> </em>

<em>It</em><em> </em><em>means</em><em> </em><em>that</em><em> </em><em>the</em><em> </em><em>similar</em><em> </em><em>triangles</em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>are</em><em> </em><em>equal</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>their</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>proportion</em><em>.</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em>

<em>EH</em><em> </em><em>and</em><em> </em><em>GF</em>

<em>EZ</em><em> </em><em>and</em><em> </em><em>ZG</em>

<em>HZ</em><em> </em><em>and</em><em> </em><em>HF</em><em>.</em>

<em>Our</em><em> </em><em>proportion</em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>similar</em><em> </em><em>triangle</em><em>s</em><em> </em><em>is</em><em> </em>

<em>Any</em><em> </em><em>two</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>first</em><em> </em><em>triangle</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>must</em><em> </em><em>equal</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>second</em><em> </em><em>triangles</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>respectively</em><em>.</em>

<em>We</em><em> </em><em>know</em><em> </em><em>FG</em><em> </em><em>and</em><em> </em><em>ZG</em><em> </em><em>so</em><em> </em><em>let</em><em> </em><em>set</em><em> </em><em>up</em><em> </em><em>our</em><em> </em><em>first</em><em> </em><em>fraction</em>

<em>\frac{fg}{zg}</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>both</em><em> </em><em>are</em><em> </em>

  • <em>EH</em><em> </em><em>and</em><em> </em><em>EZ</em><em> </em><em>respectively</em><em> </em><em> </em><em>so</em><em> </em><em>our</em><em> </em><em>proportion</em><em> </em><em> </em><em>looks</em><em> </em><em>like</em>
  • <em>\frac{fg}{zg}  =  \frac{eh}{ez}</em>
  • <em>Plug</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>for</em><em> </em><em>each</em><em>.</em><em> </em><em>Let</em><em> </em><em>x</em><em> </em><em>represent</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>EZ</em>
  • <em>\frac{9}{7}  =  \frac{5}{x}</em>
  • <em>Cross</em><em> </em><em>Multiply</em>
  • <em>9x = 35</em>
  • <em>x = 3 \frac{8}{9}  = 3.89</em>
  • <em>So</em><em> </em><em>x</em><em>=</em><em>3</em><em>.</em><em>8</em><em>9</em>
3 0
3 years ago
Other questions:
  • Z +6 divided by 1/3 = 4
    15·1 answer
  • What an equivalent expression for 48 + 18x
    11·2 answers
  • Greg earned $45.76 in 6.4 hours. How much did he earn per hour?
    10·2 answers
  • Plz solve this question..<br>Its urgent..<br>​
    6·1 answer
  • What’s the equation of the line with the given properties passes through (-4,-2) and (-4,5)
    14·1 answer
  • Kai calculates that he spends 15% of a school day in science class. If he spends 75 minutes in science class, how many minutes d
    11·1 answer
  • Show that KEYS is a square if K (-2, 4) ,E (4,2 ), Y(2,-4 ) ,S (-4, -2) are the co- ordinates of the vertices.
    9·1 answer
  • I really need these
    11·1 answer
  • The decimal 5.2323… is a(n) _____number.<br><br> rational<br> irrational<br> integer<br> whole
    10·2 answers
  • 8 1/3 33/4 8.287 8.29 order from least to greatest
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!