Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.

Answer:
Is better use the Benedict's test by the increase in the amount of the products if the enzyme is a reductase
Explanation:
The Benedict's test works by the reaction of the reducing sugars with the ion cupric of the reactive. If the enzyme is a reductase (degrades polysaccharides into bi o monosaccharides), it should cut the polysaccharide bond and the products would react with the Benedict's cupric ion
I hope you undestand me
Endocytosis
Process by which the cell surrounds and takes particles into the cell
Exocytosis
Secretion of material out of the plasma membrane
Answer:
I would go with A
Explanation:
Because the earths equator is warmed by most direct rays of the sun, air a the equator is hotter than air further north or the south. The hotter air rises up at the equator and as colder air moves in to take its place, the wind begins to blow and push the ocean into waves and currents