A mole is equivalent to 6.02 x 10^23 molecules at STP. Use a conversion factor like the following.
Example: The initial value x The value you are trying to convert to
------------------------------------------------
The value you are trying to get rid of
There should be a sufficient amount of the selected isotope in the rock.
The half-life of the isotope must be long enough to capture the age of the rock.
Explanation:
Sully must consider two main aspect before selecting her choice isotope for dating.
There must be sufficient amount of the selected isotope in the rock.
The half - life of the isotope must be long enough to capture the age of the rock.
- Radiometric dating gives a rock an absolute numerical age.
- The half-life of an isotope is time take for half of a radioactive element to decay.
- If the half-life of an isotope is very short, all the parent nuclide would have turned to daughter nuclides.
- Also, we must have sufficient amount of both the daughter and parent isotope in the selected rock.
learn more:
Radiometric dating brainly.com/question/7022607
#learnwithBrainly
Answer:
Sure, with what?
Ps- Just to increase word count
Answer:
The food coloring mixes through the hot water faster than it mixes with the cold water. This is because in hot water, thewater molecules have more energy and are moving faster than the molecules of cold water. This makes it easier for the dye to get mixed throughout the hot water.
Answer: 0.462 moles
Explanation: 13C indicates an isotope of carbon and its mass number is 13. It means the mass of 1 mol of 13C is 13 gram.
The question asks to calculate the number of atoms present in 6.00 grams of 13C.
To calculate the number of moles we divide the given grams by the mass of 1 mol of the element. The set could be shown easily using dimensional analysis as:

= 0.462 moles
So, there will be 0.462 moles of atoms in 6.00 grams of 13C.