Answer:
263.1 is exactly three half-life, so the remaining portion is (1/2 x 1/2 x 1/2) of the original sample. That's 1/8 which is 12.5%
<span>The difference in the energy exerted by an 8.0 earthquake compared to a 6.0 earthquake
A magnitude 8.0 earthquake is 100 times bigger and 1000 times stronger (energy released) than a magnitude 6.0 earthquake.
</span>
The mass of plutonium that will remain after 1000 years if the initial amount is 5 g when the half life of plutonium-239 (239pu, pu-239) is 24,100 years is 2.5 g
The equation is Mr=Mi(1/2)^n
where n is the number of half-lives
Mr is the mass remaining after n half lives
Mi is the initial mass of the sample
To find n, the number of half-lives, divide the total time 1000 by the time of the half-life(24,100)
n=1000/24100=0.0414
So Mr=5x(1/2)^1=2.5 g
The mass remaining is 2.5 g
- The half life is the time in which the concentration of a substance decreases to half of the initial value.
Learn more about half life at:
brainly.com/question/24710827
#SPJ4