Soil contains of minerals(solid), moisture(liquid), oxygen (gas), and many other components. So it is a mixture of <span>b. solids, liquids, and gases</span>
The greatest advantage of using DNA technology to produce medicines has been that B. medicine can be distributed at a reduced cost. The medicine becomes easier to produce due to DNA technology. One may consider insulin as an example of this, which had to be extracted from the blood from animals before it could be produced using DNA technology.
Answer:
Explanation:
Vascular plants have tubelike structures that carry water, nutrients, and other substances throughout the plant. Nonvascular plants do not have these tubelike structures and use other ways to move water and substances.
Vascular plants are said to have a true stem, leaves, and roots due to the presence of vascular tissues. Non-vascular plants do not have true roots, stems, or leaves and the tissues present are the least specialized forms of tissue. Some examples of vascular plants include maize, mustard, rose, cycad, ferns, clubmosses, grasses. Some examples of non-vascular plants include moss, algae, liverwort, and hornwort.
How vascular plants work through osmosis
The xylem of vascular plants consists of dead cells placed end to end that form tunnels through which water and minerals move upward from the roots to the rest of the plant. Through the xylem vessels, water enters and leaves cells through osmosis.
How non vascular plants work through osmosis
Because non vascular plants do not have the xylem and phloem ystem, they absorb water right into their cells through their leaves when it rains or when dew falls. Internal cells get their water by passive osmosis. While, they use rhizoids to transport nutrients and minerals.
Cell definition: the basic membrane-bound unit that contains the fundamental molecules of life and of which all living things are composed.
Cytology definition: the study of cells as fundamental units of living things.
By predicting how the sodium-potassium pump becomes integrated into outer cell membrane. The prediction that is false is the mRNA coding into sodium pump is translated into the pump on two ribosomes.
<h3>What is sodium-potassium pump?</h3>
The sodium-potassium pump is an enzyme (an electrogenic transmembrane ATPase) present in the membrane of all animal cells. It is also known as sodium-potassium adenosine triphosphatase, Na+/K+-ATPase, or sodium-potassium ATPase. It serves a number of purposes in cell physiology.
The enzyme Na+/K+-ATPase is activated (i.e. it uses energy from ATP). Three sodium ions are exported and two potassium ions are imported for each ATP molecule used by the pump. As a result, each pump cycle results in the net export of one positive charge.
There are four distinct sodium pump isoforms or subtypes in mammals. Each has distinct qualities and patterns of tissue expression. The P-type ATPase family includes this enzyme.
To know more about enzyme visit: brainly.com/question/14953274
#SPJ4