1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paul [167]
3 years ago
10

What is the answer to: (51 + 11.22 + 35.92)?

Mathematics
2 answers:
sashaice [31]3 years ago
6 0
The anwser is 98.14.
In-s [12.5K]3 years ago
4 0

Answer:

It would equal 98.14

Step-by-step explanation:


You might be interested in
Please please help me with this
swat32
N=1→an=a1 (first term)=16 (on the graph for n=1)→First term = 16
n=2→an=a2 (second term) = 4 (on the graph for n=2)→Second term = 4

ratio=(Second term)/(First term)=a2/a1=4/16
Simplifying the fraction dividing the numerator (4) by 4 and the denominator (16) by 4:
ratio=(4/4)/(16/4)→ratio=1/4

Answer: Option A. First term = 16, ratio = 1/4
7 0
3 years ago
Carlos has 315 rows of plants left to water. If Carlos has 23 gallons of water in his bucket, how many gallons of water can Carl
baherus [9]

Answer:

The answer is 13.6

Step-by-step explanation:

13.6 in fraction form is \frac{68}{5} or 13\frac{3}{5}

3 0
3 years ago
What is a qualitative prediction?
d1i1m1o1n [39]
A qualitative prediction is made by using senses and educated guesses, unlike quantitative observations which use scientific methods. For example, you take a rock and examine it. One qualitative observation of this rock is it is smooth and gray. A quantitative observation is it is two pounds.
Hope I helped :))
7 0
3 years ago
Simplify the following expression:<br><br> (66)4
lina2011 [118]

Answer:

46656 to the power 4

Step-by-step explanation:

6 to the power 6 = 6 × 6 × 6 × 6 × 6 × 6 = 46656

(46656) to the power 4 = 46656 × 46656 × 46656 × 46656

This answer is undefined, so we will leave it at 46656 to the power 4.

8 0
2 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • General <br> term for the sequence m, -m,m,-m.....
    13·1 answer
  • If the length of each side of a cube is doubled, is the surface area doubled? Use an example to support your answer
    8·1 answer
  • 9/4 x = 8 1/2 what is x
    7·1 answer
  • Consider the following pair of equations:
    8·1 answer
  • |x-2|-5 &lt;-2 help!!!!!!!!!!!
    8·1 answer
  • How do you solve a word problem
    14·1 answer
  • Question 6
    8·1 answer
  • Which operation should be performed<br> first to solve the inequality below?<br> -3x + 5 = 23
    8·2 answers
  • Two friends share 5 fruit bars equally.
    15·1 answer
  • What is the answer (X^2)(X)(4)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!