The probability that exactly 4 of the selected adults believe in reincarnation is 5.184%, and the probability that all of the selected adults believe in reincarnation is 7.776%.
Given that based on a poll, 60% of adults believe in reincarnation, to determine, assuming that 5 adults are randomly selected, what is the probability that exactly 4 of the selected adults believe in reincarnation, and what is the probability that all of the selected adults believe in reincarnation, the following calculations must be performed:
- 0.6 x 0.6 x 0.6 x 0.6 x 0.4 = X
- 0.36 x 0.36 x 0.4 = X
- 0.1296 x 0.4 = X
- 0.05184 = X
- 0.05184 x 100 = 5.184
- 0.6 x 0.6 x 0.6 x 0.6 x 0.6 = X
- 0.36 x 0.36 x 0.6 = X
- 0.1296 x 0.6 = X
- 0.07776 = X
- 0.07776 x 100 = 7.776
Therefore, the probability that exactly 4 of the selected adults believe in reincarnation is 5.184%, and the probability that all of the selected adults believe in reincarnation is 7.776%.
Learn more in brainly.com/question/795909
Answer:
800 divided by 4 which is 200
Step-by-step explanation:

Let's solve ~




Therefore, Option D is correct ~
4 ÷ 25 = 0.16, so 0.16 of a gallon is used per chair. The answer lies between 0 and 1.
Answer:
150%
Step-by-step explanation:
150%