Answer:
x = -7
Step-by-step explanation:
Subtract 15 from both sides of the equation.
x = 8 -15 = -7
Answer: a) 15, b) 1.
Step-by-step explanation:
A researcher studying public opinion of proposed social security changes obtains a simple random sample of 35 adult Americans and asks them whether or not they support the proposed changes. To say that the distribution of the sample proportion of adults who respond yes, is approximately normal, how many more Americans does the researcher need to sample in the following cases?
(a) 10% of all adult Americans support the changes
Here, 
And , 
So, consider the equality, to find the value of 'n'.

So, there are
more adult Americans needed.
(b) 15% of all adult Americans supports the changes
Here, 
So, again we get that

So, there are
more adult Americans needed.
Hence, a) 15, b) 1.
Another effective strategy for helping students improve their mathematics performance is related to solving word problems. More specifically, it involves teaching students how to identify word problem types based on a given problem’s underlying structure, or schema. Before learning about this strategy, however, it is helpful to understand why many students struggle with word problems in the first place.
Difficulty with Word Problems
Most students, especially those with mathematics difficulties and disabilities, have trouble solving word problems. This is in large part because word problems require students to:
Answer:
19 inche
Step-by-step explanation:
Perimerer of rectangle = 2(length + breadth)
60 = 2(length + 11)
60/2 = (length + 11)
30 - 11 = length
19 = length
Answer:
The solution to the equation system given is:
- <u>x = 2</u>
- <u>y = -1</u>
Step-by-step explanation:
First, we must know the equations given:
- 2x + 3y = 1
- 3x + y = 5
Following Crammer's Rule, we have the matrix form:
![\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] =\left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}1\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C3%261%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Now we solve using the determinants:
![x=\frac{\left[\begin{array}{ccc}1&3\\5&1\end{array}\right]}{\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] } =\frac{(1*1)-(5*3)}{(2*1)-(3*3)} = \frac{1-15}{2-9} =\frac{-14}{-7} = 2](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%5C%5C5%261%5Cend%7Barray%7D%5Cright%5D%7D%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C3%261%5Cend%7Barray%7D%5Cright%5D%20%7D%20%3D%5Cfrac%7B%281%2A1%29-%285%2A3%29%7D%7B%282%2A1%29-%283%2A3%29%7D%20%3D%20%5Cfrac%7B1-15%7D%7B2-9%7D%20%3D%5Cfrac%7B-14%7D%7B-7%7D%20%3D%202)
![y=\frac{\left[\begin{array}{ccc}2&1\\3&5\end{array}\right]}{\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] } =\frac{(2*5)-(3*1)}{(2*1)-(3*3)}=\frac{10-3}{2-9} =\frac{7}{-7}=-1](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%5C%5C3%265%5Cend%7Barray%7D%5Cright%5D%7D%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C3%261%5Cend%7Barray%7D%5Cright%5D%20%7D%20%3D%5Cfrac%7B%282%2A5%29-%283%2A1%29%7D%7B%282%2A1%29-%283%2A3%29%7D%3D%5Cfrac%7B10-3%7D%7B2-9%7D%20%3D%5Cfrac%7B7%7D%7B-7%7D%3D-1)
Now, we can find the answer which is x= 2 and y= -1, we can replace these values in the equation to confirm the results are right, with the first equation:
- 2x + 3y = 1
- 2(2) + 3(-1)= 1
- 4 - 3 = 1
- 1 = 1
And, with the second equation:
- 3x + y = 5
- 3(2) + (-1) = 5
- 6 - 1 = 5
- 5 = 5