Answer:
the world may never know
Step-by-step explanation:
The exact value of cos120 if the measure 120 degrees intersects the unit circle at point (-1/2,√3/2) is 0.5
<h3>Solving trigonometry identity</h3>
If an angle of measure 120 degrees intersects the unit circle at point (-1/2,√3/2), the measure of cos(120) can be expressed as;
Cos120 = cos(90 + 30)
Using the cosine rule of addition
cos(90 + 30) = cos90cos30 - sin90sin30
cos(90 + 30) = 0(√3/2) - 1(0.5)
cos(90 + 30) = 0 - 0.5
cos(90 + 30) = 0.5
Hence the exact value of cos120 if the measure 120 degrees intersects the unit circle at point (-1/2,√3/2) is 0.5
Learn more on unit circle here: brainly.com/question/23989157
#SPJ1
Answer:
240
Step-by-step explanation:
5(x² - 1)
5 ((-7)² - 1)
5(49 - 1)
5 (48)
I think the coefficient is the 12, before the variable
Answer: 0.0008
Step-by-step explanation: Hope this helps :)