A quadratic in vertex form reads as
(<em>x</em> - <em>a</em>)² + <em>b</em>
where (<em>a</em>, <em>b</em>) is the vertex.
To get the given quadratic in this form, complete the square:
<em>x</em>² - 6<em>x</em> - 40 = <em>x</em>² - 6<em>x</em> + 9 - 49 = (<em>x</em> - 3)² - 49
Or, work backwards by expanding the vertex form and solving for <em>a</em> and <em>b</em> :
(<em>x</em> - <em>a</em>)² + <em>b</em> = <em>x</em>² - 2<em>ax</em> + <em>a</em>² + <em>b</em>
So if
<em>x</em>² - 6<em>x</em> - 40 = <em>x</em>² - 2<em>ax</em> + <em>a</em>² + <em>b</em>,
then
-2<em>a</em> = -6 → <em>a</em> = 3
<em>a</em>² + <em>b</em> = -40 → <em>b</em> = -49
Answer:
56
x
−
88
Step-by-step explanation:
Answer:
Profit = Selling price - Variable cost
Formulas:
F2 =SUMPRODUCT(B2:E2,$B$16:$E$16) copy to F2:F12, F14
Optimal solution: The company should produce the following quantities (in pounds) of the four varieties of nuts.
Whole = 1000
Cluster = 500
Crunch = 80
Roasted = 200
Total profit = $ 2913.20
Step-by-step explanation:
She now has $300 in her account