We know that
<span>the rotation of a solid does not modify the values of the internal angles of the solid
</span>therefore
interior angle after 90° rotation=interior angle before 90° rotation
interior angle after 90° rotation=108°
the answer is the option D 108 °
3+a/2-6b in a couple weeks ago I have a couple things to say I don’t have a problem I just saw you I don’t know how to say hi I don’t have any money for that I just don’t know how to get a hold of me because I’m going out of the house to do a job I have a couple things to go and then I’m gonna be there for you and then you have a couple things that you want me to go out with your dad if not I’m done I just don’t do that you know that I’m going out of my money to do it I just want you know what
The <u>correct answer</u> is:
B) A 90° counterclockwise rotation about the origin, followed by a reflection across the x-axis, followed by a translation 8 units right and 1 unit up.
Explanation:
The coordinates of the <u>points of the pre-image</u> are:
(3, 1)
(3, 4)
(5, 7)
(6, 5)
(6, 2)
The coordinates of the <u>points of the image</u> are:
(7,-2)
(4,-2)
(1,-4)
(3,-5)
(6,-5)
A 90° counterclockwise rotation about the origin negates the y-coordinate and switches it and the x-coordinate. Algebraically,
(x,y)→(-y,x).
When this is applied to our points, we get:
(3, 1)→(-1, 3)
(3, 4)→(-4, 3)
(5, 7)→(-7, 5)
(6, 5)→(-5, 6)
(6, 2)→(-2, 6)
A reflection across the x-axis negates the y-coordinate. Algebraically,
(x, y)→(x, -y).
Applying this to our new points, we have:
(-1, 3)→(-1, -3)
(-4, 3)→(-4, -3)
(-7, 5)→(-7, -5)
(-5, 6)→(-5, -6)
(-2, 6)→(-2, -6)
A translation 8 units right and 1 unit up adds 8 to the x-coordinate and 1 to the y-coordinate. Algebraically,
(x, y)→(x+8, y+1).
Applying this to our new points, we have:
(-1, -3)→(-1+8,-3+1) = (7, -2)
(-4, -3)→(-4+8,-3+1) = (4, -2)
(-7, -5)→(-7+8,-5+1) = (1, -4)
(-5, -6)→(-5+8,-6+1) = (3, -5)
(-2, -6)→(-2+8,-6+1) = (6, -5)
These match the coordinates of the image, so this is the correct series of transformations.