The integral of e raised to x squared dx to the limit from 1 to 3 translating in equation we get
∫1-3 e^(X^2) dx.
Solving using scientific calculator, we have 1443.082471 or simply 1443.
<em>ANSWER: 1443</em>
Answer:
Step-by-step explanation:
Equals 23x
Answer:
The Least Common Multiple ( LCM ) is also referred to as the Lowest Common Multiple (LCM) and Least Common Divisor (LCD). For two integers a and b, denoted LCM (a,b), the LCM is the smallest positive integer that is evenly divisible by both a and b. For example, LCM (2,3) = 6 and LCM (6,10) = 30.
Step-by-step explanation:
The difference of two squares factoring pattern states that a difference of two squares can be factored as follows:

So, whenever you recognize the two terms of a subtraction to be two squares, you can factor it as the sum of the roots multiplied by the difference of the roots.
In this case, the squares are obvious:
is the square of
, and
is the square of 
So, we can factor the expression as
![(x+2)^2 - (y+2)^2 = [(x+2)+(y+2)] - [(x+2)+(y+2)]](https://tex.z-dn.net/?f=%20%28x%2B2%29%5E2%20-%20%28y%2B2%29%5E2%20%3D%20%5B%28x%2B2%29%2B%28y%2B2%29%5D%20-%20%5B%28x%2B2%29%2B%28y%2B2%29%5D%20)
(the round parenthesis aren't necessary, I used them only to make clear the two terms)
We can simplify the expression summing like terms:
![(x+2)^2 - (y+2)^2 = [(x+2)+(y+2)][(x+2)-(y+2)] = (x+y+4)(x-y)](https://tex.z-dn.net/?f=%28x%2B2%29%5E2%20-%20%28y%2B2%29%5E2%20%3D%20%5B%28x%2B2%29%2B%28y%2B2%29%5D%5B%28x%2B2%29-%28y%2B2%29%5D%20%3D%20%28x%2By%2B4%29%28x-y%29%20)