1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olegator [25]
3 years ago
12

A student conducts a survey to determine which students at the high school completed an algebra course during their freshman yea

r. 49, 34, and 48 students are selected at random from the Sophomore, Junior, and Senior classes. Each class has a population of 496, 348, and 481 respectively. Which type of sampling did the student use?
stratified

random

cluster

systematic
Advanced Placement (AP)
1 answer:
KiRa [710]3 years ago
7 0
<h2>Answer</h2>

Stratified sampling

<h2>Explanation</h2>

Stratified sampling is a process of dividing members of the population into homogeneous (separate) subgroups before sampling. Then a random sample is drawn from each group. Members in subgroups may not be fix and subgroups are created under specific type.

<h3>Example</h3>

Subgroup:  Sophomore, Junior, Senior classes

This sampling technique increases the precision of sampling by reducing sample size especially when population size is too large.

In cluster sampling, a random subset of population is created and then random sample drawn from it. Members of all subgroups are equal.

In systematic sampling, fixed intervals from the larger population create the subset of population. Members of all subgroups are equal.

You might be interested in
How often are paycheck stubs provided?
GaryK [48]

Answer:

Every pay period

Explanation:

Because i got it right

8 0
3 years ago
What is dispersal and elevation ?​
Kobotan [32]
Little is known about how mutualistic interactions affect the distribution of species richness on broad geographic scales. Because mutualism positively affects the fitness of all species involved in the interaction, one hypothesis is that the richness of species involved should be positively correlated across their range, especially for obligate relationships. Alternatively, if mutualisms involve multiple mutualistic partners, the distribution of mutualists should not necessarily be related, and patterns in species distributions might be more strongly correlated with environmental factors. In this study, we compared the distributions of plants and vertebrate animals involved in seed‐dispersal mutualisms across the United States and Canada. We compiled geographic distributions of plants dispersed by frugivores and scatter‐hoarding animals, and compared their distribution of richness to the distribution in disperser richness. We found that the distribution of animal dispersers shows a negative relationship to the distribution of the plants that they disperse, and this is true whether the plants dispersed by frugivores or scatter‐hoarders are considered separately or combined. In fact, the mismatch in species richness between plants and the animals that disperse their seeds is dramatic, with plants species richness greatest in the in the eastern United States and the animal species richness greatest in the southwest United States. Environmental factors were corelated with the difference in the distribution of plants and their animal mutualists and likely are more important in the distribution of both plants and animals. This study is the first to describe the broad‐scale distribution of seed‐dispersing vertebrates and compare the distributions to the plants they disperse. With these data, we can now identify locations that warrant further study to understand the factors that influence the distribution of the plants and animals involved in these mutualisms.

Introduction
A central problem in ecology is to understand the patterns and processes shaping the distribution of species. There is a preponderance of studies of species richness at broad geographic scales (Hawkins et al. 2003, Rahbek et al. 2007, Stein et al. 2014, Rabosky and Hurlbert 2015) that has facilitated our understanding of why species are found where they are, a central tenet within the domain of ecology (Scheiner and Willig 2008). Most commonly, these studies find species distributions to be correlated with resource availability and use environmental variables (e.g. temperature and productivity; Rabosky and Hurlbert 2015) to explain putative determinants of the distributions. Environmental variables are only one determinant of species’ distributions. Another, species interaction, is a key and understudied determinant of species’ distributions (Cazelles et al. 2016). In fact, in some cases species interactions may be more important for determining distribution than environmental variables (Fleming 2005).

When species interact, we expect their geographic distributions to be correlated – either positively or negatively – depending on the effect (or sign of the interaction) of one species on the other (Case et al. 2005). For pairwise interactions, where one species benefits from another species, a positive relationship is expected between the distribution and abundance due to the increase in the average fitness of the benefitting species where they overlap (Svenning et al. 2014). Furthermore, most species interactions are not simply pairwise, but diffuse, consisting of multiple interacting species, here referred to as guilds (with guilds referring to species that use the same resource). It therefore follows that where one guild benefits from another guild, a positive relationship is expected between the distribution and richness of the guids. This should be true in the case of mutualisms, where both sides of the interaction share an increase in average fitness from being together (Bronstein 2015), and there is some evidence for correlated geographic distributions of mutualists in the New World (Fleming 2005). One example of a mutualism where both sides of the interaction have a fitness advantage in each other's presence is animal‐mediated seed dispersal. Because both interacting species and guilds in seed dispersal mutualism benefit from the relationship we would predict that the richness of animal‐dispersed plants ought to be correlated with the richness of their animal dispersers and vice versa. To our knowledge, this prediction has never been tested on a large geographic scale.
3 0
3 years ago
_______ is an environmental campaigner whose motto is "think globally, act locally"
elena-14-01-66 [18.8K]

Answer:

Patrick Geddes

4 0
3 years ago
Read 2 more answers
Work activities that principle have
kaheart [24]
Setting good examples, keeping everything in order, making sure every thing stays in line, and provide work for the teachers to teach the students
7 0
3 years ago
Plz draw it and send I posted a example of one I’ll pay u after dw ❤️❤️
masya89 [10]

Answer: ok give me a moment :)

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which is the most accurate definition of bankruptcy?
    11·1 answer
  • Describe one source of renewable energy....Please explain it why would you pick the source, can it be used over the world..Ex
    9·1 answer
  • The law states that you must be able to return to your proper lane of travel before any approaching vehicle comes within _____ f
    11·2 answers
  • Which of the following foods is associated with Nontyphoidal Salmonella?
    7·2 answers
  • You must also yield to all traffic in your path when entering a roadway from __________. A. an alley B. a parking lot C. a drive
    6·1 answer
  • While a patient is having surgery, his doctor notices a small mole. the doctor doesn't think the mole is anything to worry about
    9·1 answer
  • 3. How many pounds of water could be raised in temperature 20°F by the 90% efficient burning of 30
    10·1 answer
  • Paano na mayani ang kabihasnang maya noong 300 c.e.at 700 c.e?​
    10·1 answer
  • a triangle has angles that measure (x+40), (3x +20), and (10x-20) respectively. which of the following terms best describes this
    15·1 answer
  • Explain how neonicotinoid use relates<br> to larger environmental principles
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!