Answer:
y" = -24 / y³
Step-by-step explanation:
6x² + y² = 4
Take the derivative of both sides with respect to x.
12x + 2y y' = 0
Again, take the derivative of both sides with respect to x.
12 + 2y y" + y' (2y') = 0
12 + 2y y" + 2(y')² = 0
Solve for y' in the first equation.
2y y' = -12x
y' = -6x/y
Substitute and solve for y":
12 + 2y y" + 2(-6x/y)² = 0
12 + 2y y" + 2(36x²/y²) = 0
12 + 2y y" + 72x²/y² = 0
6y² + y³ y" + 36x² = 0
y³ y" = -36x² − 6y²
y" = (-36x² − 6y²) / y³
Solve for y² in the original equation and substitute:
y² = 4 − 6x²
y" = (-36x² − 6(4 − 6x²)) / y³
y" = (-36x² − 24 + 36x²) / y³
y" = -24 / y³
Answer:
60.32
Step-by-step explanation:
126%=1.26
60.32*1.26=76.0032
76.0032≈76
The answer would be n = 1
Answer:
-14
Step-by-step explanation:
difference between -20 and -5 = 15
15 x 2/5 = 30/5 = 6
-20 + 6 = -14
Answer:
First brand of antifreeze: 21 gallons
Second brand of antifreeze: 9 gallons
Step-by-step explanation:
Let's call A the amount of first brand of antifreeze. 20% pure antifreeze
Let's call B the amount of second brand of antifreeze. 70% pure antifreeze
The resulting mixture should have 35% pure antifreeze, and 30 gallons.
Then we know that the total amount of mixture will be:

Then the total amount of pure antifreeze in the mixture will be:


Then we have two equations and two unknowns so we solve the system of equations. Multiply the first equation by -0.7 and add it to the second equation:



+

--------------------------------------



We substitute the value of A into one of the two equations and solve for B.

