1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Over [174]
2 years ago
10

PLEASE HELP DIRECTIONS INCLUDED IN PHOTOS.

Mathematics
2 answers:
son4ous [18]2 years ago
5 0
I just took the test yesterday and passed
1. First one is False second one is true
2. the points are -2,-3 1,6 2,9
3. -3
4. 1
Helen [10]2 years ago
4 0
1) False, True
2) Coordinates are: (-2,0), (1,6), and (2,8)
3) -3
4) -5

-Belle
You might be interested in
PLS HELP
sertanlavr [38]

Answer:

C. 76 + 7i

Step-by-step explanation:

49 squared is 7 and since it's negative, it is an imaginary number. Therefore, it is 7i. Which leaves C to be the correct option.

8 0
2 years ago
I
Black_prince [1.1K]
Check your last post :) I answered this
3 0
2 years ago
Read 2 more answers
Which function passes through the points (2,3) and (4,4)?
Pie
A(2;3), B(4;4)
y=ax+b
a=\dfrac{4-3}{4-2}=\dfrac{1}{2}
3=\dfrac{1}{2}*2+b
3=1+b
b=2

y=\dfrac{1}{2}x+2

:)
6 0
2 years ago
You have just completed an experiment measuring the length (in mm) of 12 soybean plants after 3 days of sprouting. The measureme
sweet-ann [11.9K]

Answer:

The new IQR is 22.    

Step-by-step explanation:

We are given the following data of  length (in mm) of 12 soybean plants after 3 days of sprouting.

53, 47, 51, 54, 43, 39, 61, 57, 55, 46, 44, 43

Sorted data:

39, 43, 43, 44, 46, 47, 51, 53, 54, 55, 57, 61

Formula:

IQR = Q_3 - Q_1\\Q_3 = \text{upper median},\\Q_1 = \text{ lower median}

Median:\\\text{If n is odd, then}\\\\Median = \displaystyle\frac{n+1}{2}th ~term \\\\\text{If n is even, then}\\\\Median = \displaystyle\frac{\frac{n}{2}th~term + (\frac{n}{2}+1)th~term}{2}  

Median ==\dfrac{6^{th}+7^{th}}{2} \dfrac{47+51}{2} = 49

Q_1 =\dfrac{3^{rd}+4^{th}}{2} = \dfrac{43 + 44}{2} = 43.5\\\\Q_3 =\dfrac{9^{th}+10^{th}}{2}= \frac{54 + 55}{2} = 54.5

IQR = Q_3 -Q_1 =54.5-43.5= 11

If every measurement is doubled, then, the IQR will also double itself.

Thus,

New IQR =

2\times \text{IQR}\\=2\TIMES 11\\=22

Thus, the new IQR is 22.

4 0
3 years ago
Please help with this Calculus questions
Triss [41]

Answer:

\int_{0}^{1}\left( - \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2 \right)du=\frac{193}{100}=1.93.

Step-by-step explanation:

To find \int_{0}^{1}\left( - \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2 \right)du.

First, calculate the corresponding indefinite integral:

Integrate term by term:

\int{\left(- \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2\right)d u}} =\int{2 d u} + \int{\frac{2 u^{4}}{5} d u} - \int{\frac{3 u^{9}}{2} d u}

Apply the constant rule \int c\, du = c u

\int{2 d u}} + \int{\frac{2 u^{4}}{5} d u} - \int{\frac{3 u^{9}}{2} d u} = {\left(2 u\right)} + \int{\frac{2 u^{4}}{5} d u} - \int{\frac{3 u^{9}}{2} d u}

Apply the constant multiple rule \int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du

2 u - {\int{\frac{3 u^{9}}{2} d u}} + \int{\frac{2 u^{4}}{5} d u} = 2 u - {\left(\frac{3}{2} \int{u^{9} d u}\right)} + \left(\frac{2}{5} \int{u^{4} d u}\right)

Apply the power rule \int u^{n}\, du = \frac{u^{n + 1}}{n + 1}

2 u - \frac{3}{2} {\int{u^{9} d u}} + \frac{2}{5} {\int{u^{4} d u}}=2 u - \frac{3}{2} {\frac{u^{1 + 9}}{1 + 9}}+ \frac{2}{5}{\frac{u^{1 + 4}}{1 + 4}}

Therefore,

\int{\left(- \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2\right)d u} = - \frac{3 u^{10}}{20} + \frac{2 u^{5}}{25} + 2 u = \frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)

According to the Fundamental Theorem of Calculus, \int_a^b F(x) dx=f(b)-f(a), so just evaluate the integral at the endpoints, and that's the answer.

\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=1\right)}=\frac{193}{100}

\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=0\right)}=0

\int_{0}^{1}\left( - \frac{3 u^{9}}{2} + \frac{2 u^{4}}{5} + 2 \right)du=\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=1\right)}-\left(\frac{u}{100} \left(- 15 u^{9} + 8 u^{4} + 200\right)\right)|_{\left(u=0\right)}=\frac{193}{100}

6 0
3 years ago
Other questions:
  • What is the surface area of a box if it is scaled up by a factor of 10
    11·1 answer
  • Plz answer it’s easy giving brainliest
    14·1 answer
  • What is the value of x? Teach me
    5·1 answer
  • 30 POINTS FOR WHO EVER GIVE ME THE RIGHT ANSWER
    9·2 answers
  • NEED HELP ASP which of the following is an example of a mixed number?
    5·2 answers
  • Factor the expression completely, -12.75 + 4.25x
    11·1 answer
  • Help me, correct answers appreciated ​
    8·2 answers
  • HELP FAST
    13·2 answers
  • SOMEBODY HELP ME ASAP PLSSSS ​
    5·1 answer
  • What is 1/4 of 16 please help​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!