You put 4 in the X
1/2(4)+5y-10<0
2+5y-10<0
-8+5y<0
5Y<8
Y<8/5
Answer:
The relative frequency is found by dividing the class frequencies by the total number of observations
Step-by-step explanation:
Relative frequency measures how often a value appears relative to the sum of the total values.
An example of how relative frequency is calculated
Here are the scores and frequency of students in a maths test
Scores (classes) Frequency Relative frequency
0 - 20 10 10 / 50 = 0.2
21 - 40 15 15 / 50 = 0.3
41 - 60 10 10 / 50 = 0.2
61 - 80 5 5 / 50 = 0.1
81 - 100 <u> 10</u> 10 / 50 = <u>0.2</u>
50 1
From the above example, it can be seen that :
- two or more classes can have the same relative frequency
- The relative frequency is found by dividing the class frequencies by the total number of observations.
- The sum of the relative frequencies must be equal to one
- The sum of the frequencies and not the relative frequencies is equal to the number of observations.
Since the height of an equilateral triangle in terms of its side s is s√3/2, the height of the triangle is 6√3/2 = 3√3 and so the area is (1/2)(6)(3√3) = 9√3.
<span>If we draw a horizontal line a height of h from the base of the triangle, the region is split into two regions: the lower region consisting of a trapezoid of height h and the upper region consisting of a triangle of height 3√3 - h. </span>
<span>Since the upper triangle and the triangle itself are similar triangles, the base and height are proportional. If we let x denote the base of the length of the upper triangle, we have: </span>
<span>(S. of small triangle)/(S. of big triangle) = (Ht. of small triangle)/(Ht. of big triangle) </span>
<span>==> x/6 = (3√3 - h)/(3√3) </span>
<span>==> x = (6√3 - 2h)/√3 </span>
<span>Thus, the area of the upper triangle is: </span>
<span>A = (1/2)[(6√3 - 2h)/√3](3√3 - h) = [(6√3 - 2h)(3√3 - h)]/(2√3). </span>
<span>(Made a dumb mistake about the height here for some reason) </span>
<span>Since we require that the area of this triangle is to be half of the total area (9√3/2), we need to solve: </span>
<span>[(6√3 - 2h)(3√3 - h)]/(2√3) = 9√3/2 </span>
<span>==> (6√3 - 2h)(3√3 - h) = 27 </span>
<span>==> 54 - 6h√3 - 6h√3 + 2h^2 = 27 </span>
<span>==> 2h^2 - 12h√3 + 27 = 0. </span>
<span>Solving with the Quadratic Formula gives: </span>
<span>h = (6√3 + 3√6)/2 ≈ 8.87 units and h = (6√3 - 3√6)/2 ≈ 1.52 units. </span>
<span>Since h = (6√3 + 3√6)/2 would place the line outside of the triangle, we pick h = (6√3 - 3√6)/2. </span>
<span>Therefore, the line should be ==> (6√3 - 3√6)/2 units from the base. </span>
<span>I hope this helps! ^^ Brainliest Please?</span><span>
</span>
M= 4/5 or the alternative form for m can be 0.8
First of all we need to convert the 3 yards to inches, So 3 * 12 = 36
36 / 16 = 2.25
I hope this helps :)