1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
9

Help me please !!!!!!!!!​

Mathematics
1 answer:
Luda [366]3 years ago
7 0

Answer:

I just did it came up with answer but not one of them. This the right answer

You might be interested in
A variety pack of snacks contains 4 pretzel bags, 3 popcorn bags and 3 cheddar cracker bags. What is the probability that someon
Svetlanka [38]

Answer:

2/15

Step-by-step explanation:

Given that :

pretzel = 4

Popcorn = 3

Cheddar cracker = 3

Total = 4 + 3 + 3 = 10

Probability = Required outcome / Total possible outcomes

Selecting with replacement :

First selection :

P(pretzel bag) = 4 / 10

Second selection :

P(pretzel bag) = 3 / 9

P(2 pretzel bags) = 4/10 * 3/9 = 12 / 90 = 2/15

5 0
3 years ago
Esmeralda rent a car from a company that race cars by an hour she has a pair nishal fee of $52 and then they charged her $8 per
tatuchka [14]

Answer:

11 hours is the most she can afford

Step-by-step explanation:


7 0
3 years ago
In the definition of fractional numbers, b ≠ 0. Why?
Nataliya [291]
I have no idea. Just commenting to get the answer when someone else knows it
6 0
3 years ago
Time spent using​ e-mail per session is normally​ distributed, with mu equals 11 minutes and sigma equals 3 minutes. Assume that
liq [111]

Answer:

a) 0.259

b) 0.297

c) 0.497

Step-by-step explanation:

To solve this problem, it is important to know the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central limit theorem

The Central Limit Theorem estabilishes that, for a random variable X, with mean \mu and standard deviation \sigma, a large sample size can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}

In this problem, we have that:

\mu = 11, \sigma = 3

a. If you select a random sample of 25 ​sessions, what is the probability that the sample mean is between 10.8 and 11.2 ​minutes?

Here we have that n = 25, s = \frac{3}{\sqrt{25}} = 0.6

This probability is the pvalue of Z when X = 11.2 subtracted by the pvalue of Z when X = 10.8.

X = 11.2

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{11.2 - 11}{0.6}

Z = 0.33

Z = 0.33 has a pvalue of 0.6293.

X = 10.8

Z = \frac{X - \mu}{s}

Z = \frac{10.8 - 11}{0.6}

Z = -0.33

Z = -0.33 has a pvalue of 0.3707.

0.6293 - 0.3707 = 0.2586

0.259 probability, rounded to three decimal places.

b. If you select a random sample of 25 ​sessions, what is the probability that the sample mean is between 10.5 and 11 ​minutes?

Subtraction of the pvalue of Z when X = 11 subtracted by the pvalue of Z when X = 10.5. So

X = 11

Z = \frac{X - \mu}{s}

Z = \frac{11 - 11}{0.6}

Z = 0

Z = 0 has a pvalue of 0.5.

X = 10.5

Z = \frac{X - \mu}{s}

Z = \frac{10.5 - 11}{0.6}

Z = -0.83

Z = -0.83 has a pvalue of 0.2033.

0.5 - 0.2033 = 0.2967

0.297, rounded to three decimal places.

c. If you select a random sample of 100 ​sessions, what is the probability that the sample mean is between 10.8 and 11.2 ​minutes?

Here we have that n = 100, s = \frac{3}{\sqrt{100}} = 0.3

This probability is the pvalue of Z when X = 11.2 subtracted by the pvalue of Z when X = 10.8.

X = 11.2

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{11.2 - 11}{0.3}

Z = 0.67

Z = 0.67 has a pvalue of 0.7486.

X = 10.8

Z = \frac{X - \mu}{s}

Z = \frac{10.8 - 11}{0.3}

Z = -0.67

Z = -0.67 has a pvalue of 0.2514.

0.7486 - 0.2514 = 0.4972

0.497, rounded to three decimal places.

5 0
3 years ago
A genetic experiment involving peas yielded one sample of offspring consisting of 420 green peas and 174 yellow peas. Use a 0.01
slavikrds [6]

Answer:

a) z=\frac{0.293 -0.23}{\sqrt{\frac{0.23(1-0.23)}{594}}}=3.649  

b) For this case we need to find a critical value that accumulates \alpha/2 of the area on each tail, we know that \alpha=0.01, so then \alpha/2 =0.005, using the normal standard table or excel we see that:

z_{crit}= \pm 2.58

Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis at 1% of significance.

Step-by-step explanation:

Data given and notation

n=420+174=594 represent the random sample taken

X=174 represent the number of yellow peas

\hat p=\frac{174}{594}=0.293 estimated proportion of yellow peas

p_o=0.23 is the value that we want to test

\alpha=0.01 represent the significance level

Confidence=99% or 0.99

z would represent the statistic (variable of interest)

p_v represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the true proportion of yellow peas is 0.23:  

Null hypothesis:p=0.23  

Alternative hypothesis:p \neq 0.23  

When we conduct a proportion test we need to use the z statisitc, and the is given by:  

z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}} (1)  

The One-Sample Proportion Test is used to assess whether a population proportion \hat p is significantly different from a hypothesized value p_o.

Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

z=\frac{0.293 -0.23}{\sqrt{\frac{0.23(1-0.23)}{594}}}=3.649  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level provided \alpha=0.05. The next step would be calculate the p value for this test.  

Since is a bilateral test the p value would be:  

p_v =2*P(z>3.649)=0.00026  

So the p value obtained was a very low value and using the significance level given \alpha=0.05 we have p_v so we can conclude that we have enough evidence to reject the null hypothesis.

b) Critical value

For this case we need to find a critical value that accumulates \alpha/2 of the area on each tail, we know that \alpha=0.01, so then \alpha/2 =0.005, using the normal standard table or excel we see that:

z_{crit}= \pm 2.58

Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis at 1% of significance.

5 0
4 years ago
Other questions:
  • Darcy bought 1\2 pound of cheese and 3/4 pound of hamburger for barbecue use the number to compare the amounts of cheese and ham
    5·2 answers
  • Solve the equation for the bold variable
    8·1 answer
  • Combining like terms 7x + 2y - 2x -2y.
    8·1 answer
  • given: a= the square root of 3 b= 2 times the square root of 3 c= the square root of 25 d= the square root of 16 wich expression
    13·1 answer
  • Word Problem:
    12·1 answer
  • HELP ME ASAP<br><br> Car X travels 268 miles in 4 hours.
    6·1 answer
  • Keith has $500 in a savings account at the beginning of
    5·1 answer
  • What is 2x3-4x5 and 3x6=
    10·1 answer
  • Need help on geometry TO PASS My Class so can you help please
    10·2 answers
  • Really confused as to what I need to do. I tried to solve for Y and got 69 but that didn't work. Am I supposed to use a^2 + b^2=
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!