Answer:
My answer would be; the performer displays rapid initial improvement followed by a decline in the rate of improvement.
Step-by-step explanation:
Usually a learning curve means that struggles are occurring after time of understanding and if we were creating a linear graph of this learning curve, it would be decreasing.
Answer:
(a) the new angle the ladder makes with the ground is 
(b) the ladder slipped back about 5 meters
Step-by-step explanation:
Notice that the ladder doesn't change its length in the process.
So let's start from the initial situation , finding the distance from the ground at which the ladder touches the wall when the angle with the ground is 70^o. Notice that this situation is represented by a right angle triangle with the right angle between the wall and the ground (see attached image), and that we can use the sine function to find the side opposite to the 70 degree angle:

therefore 9.4 meters is approximately the height at which the ladder touches the wall initially.
Now, if the tip of the ladder goes down the wall 4 meters, it is now at 9.4 m - 4 m = 5.4 m from the ground. We can therefore use again the sine function to solve for the new angle:

To answer the second question we need to find the original distance from the wall that the bottom of the ladder was originally, and for that we can use the cosine function:

Now fro the new position of the bottom of the ladder relative to the wall:

then the difference in between those two distances is what we need:
8.4 m - 3.4 m = 5 m
Answer:


Step-by-step explanation:
By geometric mean property:

Answer:
f(3)=5
f(0)= -7
Step-by-step explanation:
replace
4(3)-7
f(3)=5
f(0)=4(0)-7
f(0)=0-7
f(0)= -7
Answer:
<u>Volume</u>
For the rectangle, h = 3cm, l = 8cm, w = 6cm
V = length x width x height
V = 8cm x 6cm x 3cm
V = 144cm^3
For the semi circle, we need to find the radius. The radius is width/2, so 6cm/2 = 3cm. r = 3cm,
= 3.14
V = radius^2 x height x 
V = 3cm^2 x 3cm x 3.14
V = 84.8 cm^3/2 (because the cylinder needs to be divided to form a semi-circle)
V= 42.4cm^3 (there are two cylinders though so we will multiply this by 2 in the total volume)
Total volume:
V = 144cm^3 + 42.4cm^3(2)
V = 186.4cm^3
<u>Surface Area</u>
Rectangular prism:
A = 2[w(l) + h(l) + h(w)]
A = 2[6cm(8cm) + 3cm(8cm) + 3cm(6cm)]
A = 180cm^2
But there are two sides that are covered by the semi-circular prisms, so we will have to calculate those sides and remove them.
A = l x w
A = 6cm x 3cm
A = 18cm^2(2) (2 being the two faces)
A = 36cm^2
A = 180cm^2 - 36cm^2
A = 144cm^2 (the area of the rectangle)
Semi-circular prism:
A = 2
rh + 2
r^2
Earlier, we found out that the radius of the circle is 3cm, so we will plug that in.
A = 2(3.14)(3cm)(3cm) + 2(3.14)(3cm)^2
A = 113.09cm^2
Total surface area:
A = 144cm^2 + 133.09cm^2
A = 277.09cm^2
Therefore the total volume of the prism is 186.4cm^3 and the total surface area is 277.09cm^2.