To answer this, you need to know the general form of an absolute value function. the equation for this is f(x<span>) = </span>a|x<span> - </span>h<span>| + </span>k, and in this equation, the vertex is (h, k).
with that information, you can see that your vertex will be (-5, 7). you must take the negative for 5 because the general equation states that your h value is usually subtracted from x. to check your vertex, try plugging it into your general equation:
f(x) = a|x - (-5)| + 7
f(x) = a|x + 5| + 7 ... you see that this matches your given equation. this last part here was just to show why your 5 must be negative; your answer is bolded.
Answer:

Domain: All Real Numbers
General Formulas and Concepts:
<u>Algebra I</u>
- Domain is the set of x-values that can be inputted into function f(x)
<u>Calculus</u>
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Derivative: ![\frac{d}{dx} [ln(u)] = \frac{u'}{u}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bln%28u%29%5D%20%3D%20%5Cfrac%7Bu%27%7D%7Bu%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = ln(2x² + 1)
<u>Step 2: Differentiate</u>
- Derivative ln(u) [Chain Rule/Basic Power]:

- Simplify:

- Multiply:

<u>Step 3: Domain</u>
We know that we would have issues in the denominator when we have a rational expression. However, we can see that the denominator would never equal 0.
Therefore, our domain would be all real numbers.
We can also graph the differential function to analyze the domain.
Answer:
π/3 units
Step-by-step explanation:
arc length = 2πr(°/360)
= 2π*3(20/360)
= π/3 units
Answer:
4.6
Step-by-step explanation:
For this question, we need the opposite side and have the opposite
with that said, out of SOH, CAH, TOA it's fastest to use TOA
tan(75)=17/x
17/(tan(75))=x
x= 4.555136271
which rounds to
4.6