She can put the rocks into,
2 groups of 19
Or one group of 38.
AnswerTo the following subject of 1.08×10 in standard form you have to calculate the radius in yet to find the perimeter
Answer:
Case A) tau_net = -243.36 N m, case B) tau_net = 783.36 N / m, tau_net = -63.36 N m, case C) tau _net = - 963.36 N m,
Explanation:
For this exercise we use Newton's relation for rotation
Σ τ = I α
In this exercise the mass of the child is m = 28.8, assuming x = 1.5 m, the force applied by the man is F = 180N
we will assume that the counterclockwise turns are positive.
case a
tau_net = m g x - F x2
tau_nett = -28.8 9.8 1.5 + 180 1
tau_net = -243.36 N m
in this case the man's force is downward and the system rotates clockwise
case b
2 force clockwise, the direction of
the force is up
tau_nett = -28.8 9.8 1.5 - 180 2
tau_net = 783.36 N / m
in case the force is applied upwards
3) counterclockwise
tau_nett = -28.8 9.8 1.5 + 180 2
tau_net = -63.36 N m
system rotates clockwise
case c
2 schedule
tau_nett = -28.8 9.8 1.5 - 180 3
tau _net = - 963.36 N m
3 counterclockwise
tau_nett = -28.8 9.8 1.5 + 180 3
tau_net = 116.64 Nm
the sitam rotated counterclockwise
<h3><u><em>
Cr: moya1316</em></u></h3>
<u><em>Answer:</em></u>
The bird is approximately 9 ft high up in the tree
<u><em>Explanation:</em></u>
The required diagram is shown in the attached image
Note that the tree, the cat and the ground form a right-angled triangle
<u>Therefore, we can apply special trigonometric functions</u>
<u>These functions are as follows:</u>

<u>Now, taking a look at our diagram, we can note the following:</u>
α = 25°
The opposite side is the required height (x)
The adjacent side is the distance between the cat and the tree = 20 ft
Therefore, we can use the <u>tan function</u>
<u>This is done as follows:</u>
which is 9 ft approximated to the nearest ft
Hope this helps :)
Answer:
a: 3
b. 6973568802
Step-by-step explanation:
a₁ = 6 , r = 3 , a₂₀ =?
Result:
a₂₀ = 6973568802
Explanation:
To find a₂₀ we use the formula
aₙ = a₁ · r
^ⁿ⁻¹
In this example we have a₁ = 6 , r = 3 , n = 20. After substituting these values to above
formula, we obtain:
aₙ = a₁ · r
^ⁿ⁻¹
a₂₀ = 6 · 3
^²⁰⁻¹
a₂₀ = 6 · 1162261467
a₂₀ = 6973568802