Answer:
a)
b) ![P(X> 2)=1-P(X\leq 2)=1-[0.0211+0.0995+0.211]=0.668](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5B0.0211%2B0.0995%2B0.211%5D%3D0.668)
c)
Step-by-step explanation:
1) Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
2) Solution to the problem
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
Part a
Part b
![P(X> 2)=1-P(X\leq 2)=1-[P(X=0)+P(X=1)+P(X=2)]](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5BP%28X%3D0%29%2BP%28X%3D1%29%2BP%28X%3D2%29%5D)
![P(X> 2)=1-P(X\leq 2)=1-[0.0211+0.0995+0.211]=0.668](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5B0.0211%2B0.0995%2B0.211%5D%3D0.668)
Part c
Answer:
m = 4
Step-by-step explanation:
Parallel means to have the same slope but different x- and y- intercepts
An example would be y = 4x + 6 and y = 4x - 2
The value of constant a is -5
Further explanation:
We will use the comparison of co-efficient method for finding the value of a
So,
Given

As it is given that
(x^2 - 3x + 4)(2x^2 +ax + 7) = 2x^4 -11x^3 +30x^2 -41x +28
In this case, co-efficient of variables will be equal, so we can compare the coefficients of x^3, x^2 or x
Comparing coefficient of x^3

So the value of constant a is -5
Keywords: Polynomials, factorization
Learn more about factorization at:
#LearnwithBrainly
Answer:
I do believe that the answer is 0 solutions.
Step-by-step explanation:
x+10 =x+5
Subtract 5 from both sides, you get:
x+5=x
Subtract x from both sides, and you get:
5=0 which is NOT true. Also I maybe wrong, pls don't be mad at me.