1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GREYUIT [131]
3 years ago
10

How to do question 27

Mathematics
1 answer:
GenaCL600 [577]3 years ago
5 0
1/(sin(90 + θ)cos(360 - θ))     -   tan²(-θ)

Note:

 sin(90 + θ) = cosθ        Cosine and Sine are complementary.

cos(360 - θ) = cosθ      Cosine positive in 4th quadrant.

tan(-θ) = -tanθ          Negative angle concept.


1/(sin(90 + θ)cos(360 - θ))     -   tan²(-θ) =  1/(cosθcosθ)     -   (-tanθ)²

                                                                 =  1/(cos²θ)     -       tan²θ

                                                                  =  (1/cosθ)²     -       tan²θ
Note: 1/cosθ = secθ

                                                                 =  (secθ)²     -       tan²θ

                                                                  =  sec²θ     -       tan²θ

                                                                  =  1


Note that    1+ tan²θ = sec²θ is a Trigonometric identity.

That means:  sec²θ     -       tan²θ = 1

Hope this explains it.
You might be interested in
Hi. can you help me?
PIT_PIT [208]

Answer:

Sure

Step-by-step explanation:

First you need to ____

Next you need to ____

Last, put nothing

That's what you did, so I helped you out.

Is dis good

7 0
3 years ago
Read 2 more answers
What is 4 divided by 10 and 3/4
Vladimir79 [104]

Answer:

4 divided by 10 is 0.4

and 3/4 is 0.75

4 0
3 years ago
Read 2 more answers
What does 2.5 equate to
Luda [366]
In a fraction, 2.5 equates to 5/2
5 0
4 years ago
Read 2 more answers
The area of a circle is approximately 379.94 square inches. What is the diameter of the circle? [Use 3.14 as an approximation fo
VladimirAG [237]
The diameter would be 21.99. 

7 0
3 years ago
Read 2 more answers
Evaluate integral _C x ds, where C is
borishaifa [10]

Answer:

a.    \mathbf{36 \sqrt{5}}

b.   \mathbf{ \dfrac{1}{108} [ 145 \sqrt{145} - 1]}}

Step-by-step explanation:

Evaluate integral _C x ds  where C is

a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6)

i . e

\int  \limits _c \ x  \ ds

where;

x = t   , y = t/2

the derivative of x with respect to t is:

\dfrac{dx}{dt}= 1

the derivative of y with respect to t is:

\dfrac{dy}{dt}= \dfrac{1}{2}

and t varies from 0 to 12.

we all know that:

ds=\sqrt{ (\dfrac{dx}{dt})^2 + ( \dfrac{dy}{dt} )^2}} \  \ dt

∴

\int \limits _c  \ x \ ds = \int \limits ^{12}_{t=0} \ t \ \sqrt{1+(\dfrac{1}{2})^2} \ dt

= \int \limits ^{12}_{0} \  \dfrac{\sqrt{5}}{2}(\dfrac{t^2}{2})  \ dt

= \dfrac{\sqrt{5}}{2} \ \ [\dfrac{t^2}{2}]^{12}_0

= \dfrac{\sqrt{5}}{4}\times 144

= \mathbf{36 \sqrt{5}}

b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)

Given that:

x = t  ; y = 3t²

the derivative of  x with respect to t is:

\dfrac{dx}{dt}= 1

the derivative of y with respect to t is:

\dfrac{dy}{dt} = 6t

ds = \sqrt{1+36 \ t^2} \ dt

Hence; the  integral _C x ds is:

\int \limits _c \ x \  ds = \int \limits _0 \ t \ \sqrt{1+36 \ t^2} \  dt

Let consider u to be equal to  1 + 36t²

1 + 36t² = u

Then, the differential of t with respect to u is :

76 tdt = du

tdt = \dfrac{du}{76}

The upper limit of the integral is = 1 + 36× 2² = 1 + 36×4= 145

Thus;

\int \limits _c \ x \  ds = \int \limits _0 \ t \ \sqrt{1+36 \ t^2} \  dt

\mathtt{= \int \limits ^{145}_{0}  \sqrt{u} \  \dfrac{1}{72} \ du}

= \dfrac{1}{72} \times \dfrac{2}{3} \begin {pmatrix} u^{3/2} \end {pmatrix} ^{145}_{1}

\mathtt{= \dfrac{2}{216} [ 145 \sqrt{145} - 1]}

\mathbf{= \dfrac{1}{108} [ 145 \sqrt{145} - 1]}}

5 0
4 years ago
Other questions:
  • Two angles are supplementary. They have the measures of
    10·2 answers
  • I need help I don’t understand algebra
    15·1 answer
  • The population of a certain country is approximated by the following​ equation, where x is the number of years since 1980 and P
    8·1 answer
  • What is the solution for <br> 8x+10=3x+5y
    14·2 answers
  • How do you find x for this question?
    9·1 answer
  • Help!!! 10 questions. but here is number 1 attached!
    6·1 answer
  • Please answer question correctly<br> 30 POINTS!
    12·1 answer
  • Mr. Doss reached into a bag and pulled out a handful of counters. He pulled out 16 negative counters and 27 positive counters. W
    12·1 answer
  • HELP ME ASAP I NEED A GOOD GRADE
    14·1 answer
  • I NEED HELP ASAP<br> It is 10<br> Point and I’m timed
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!