The addition property of equality justifies this. You could also say that she simply subtracted 7, and then it would be the subtraction property of equality. This is the case because if you add or subtract (or multiply or divide) the same number on both sides of an equation, the equation will still be the same.
Hope it helps!
2 or a few months. This should be the answer
Answer:
![x=2\textrm{ or } x=-\frac{4}{3}](https://tex.z-dn.net/?f=x%3D2%5Ctextrm%7B%20or%20%7D%20x%3D-%5Cfrac%7B4%7D%7B3%7D)
Step-by-step explanation:
Given:
The equation is given as:
![3x^{2}-2x-8=0\\3x^{2}-6x+4x-8=0\\3x(x-2)+4(x-2)=0\\(x-2)(3x+4)=0\\\\x-2=0\textrm{ or }3x+4=0\\x-2+2=0+2 \textrm{ or }3x+4-4=0-4\\x=2\textrm{ or }3x=-4\\x=2\textrm{ or}\\x=-\frac{4}{3}](https://tex.z-dn.net/?f=3x%5E%7B2%7D-2x-8%3D0%5C%5C3x%5E%7B2%7D-6x%2B4x-8%3D0%5C%5C3x%28x-2%29%2B4%28x-2%29%3D0%5C%5C%28x-2%29%283x%2B4%29%3D0%5C%5C%5C%5Cx-2%3D0%5Ctextrm%7B%20or%20%7D3x%2B4%3D0%5C%5Cx-2%2B2%3D0%2B2%20%5Ctextrm%7B%20or%20%7D3x%2B4-4%3D0-4%5C%5Cx%3D2%5Ctextrm%7B%20or%20%7D3x%3D-4%5C%5Cx%3D2%5Ctextrm%7B%20or%7D%5C%5Cx%3D-%5Cfrac%7B4%7D%7B3%7D)
Therefore, the possible values of
are 2 and ![-\frac{4}{3}](https://tex.z-dn.net/?f=-%5Cfrac%7B4%7D%7B3%7D)
Step-by-step explanation:
IIIIIIIIIIIIisjsbsbszzvsbshsgsvsbdhdhd dbdhhdbd 5 dbdhdbdbdbsgs s dbshsbd dbshsvssbs sjhdd. dhd