1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
3 years ago
6

Consider the proportion 3:4 = 6:8. What is true about the cross products?

Mathematics
2 answers:
vitfil [10]3 years ago
7 0
Cross products are equal
vagabundo [1.1K]3 years ago
6 0
By the proportion 3 : 4 = 6 : 8, shoul be:

product of means is 4*6 = 24
and product of extremes is 8*3 = 24

so cross product are equal

hope this help
You might be interested in
Solve the system of linear equations by graphing <br> y=1/3x+5<br> y=2/3x+5<br> What is the solution
Tamiku [17]

Answer:

We have the system of equations:

y=1/3x+5

y=2/3x+5

To solve it graphically, we need to graph both lines and see in which point the lines intersect.

You can see the graph below, and you can see that the lines intersect in the point (0, 5)

Now, we can also solve this analytically.

We can use the fact that for the solution, we need y = y.

Then we can write:

(1/3)*x + 5 = (2/3)*x + 5

First, we can subtract 5 in both equations to get:

(1/3)*x = (2/3)*x

This only has a solution when x = 0.

Replacing x = 0 in one of the equations, we get:

y = (1/3)*0 + 5 = 5

Then the solution is x = 0, and y = 5, as we already could see in the graph.

3 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
What does the digit 7 represent in 701, 280?
kenny6666 [7]

Answer: seven hundred thousand

3 0
3 years ago
Read 2 more answers
A model airplane is shot up from a platform 1 foot above the ground with an initial upward velocity of 56 feet per second. The h
nata0808 [166]
For a vertical projectile, the equation of motion is expressed h(t)=g+bt+c, where g is gravity, b is the initial upward velocity, and c is the starting height. The maxima of this equation is given by -b/2g, which in this case would be -56/-32, or 1.75 seconds after launch
☺☺☺☺
3 0
3 years ago
Read 2 more answers
Given that sin(30)=1/2 and cos(30)=(sqrt3)/2, use trigonometric identities to find the value of cot(30)
Anit [1.1K]

<u>Your question: </u>given that sin(30)=1/2 and cos(30)=(sqrt3)/2, use trigonometric identities to find the value of cot(30)

The correct answer would be D \sqrt{3}

5 0
3 years ago
Other questions:
  • If <img src="https://tex.z-dn.net/?f=x-12%5Csqrt%7Bx%7D%20%2B36%3D0" id="TexFormula1" title="x-12\sqrt{x} +36=0" alt="x-12\sqrt{
    5·1 answer
  • The sum of two consecutive natural numbers is 525.<br> Find the numbers.
    14·1 answer
  • Least to greatest in order 1/2 , -1/2 , -1/3 , 1/3​
    13·2 answers
  • I eat 2 spoons of nuts every day for a week. Then I eat 3 spoons for the following w weeks. How many spoons did I eat on average
    8·1 answer
  • X + y = -2<br> -x + y = 6<br> Solve the linear system
    7·1 answer
  • Find a function g for which g'(4)=g'(-8)=0
    12·1 answer
  • What is the surface area?
    12·1 answer
  • *HELP*
    7·2 answers
  • Need help ASAP! Solve for x. Problem in picture;)
    15·2 answers
  • Evaluate<br> 4(x+5)(2+1)<br> (2+3)(2-3)<br> for x = 5.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!