1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
3 years ago
7

Need help thank youuu

Mathematics
1 answer:
suter [353]3 years ago
3 0

Answer:

<em>Option C.</em>

Step-by-step explanation:

If you subtract each value from the next one, you see the differences are different. Therefore, it is not linear. Now divide each value by the previous value. You get 1.7 each time.

Answer: Option C.

You might be interested in
How do you know if an angle is acute or obtuse?
ValentinkaMS [17]
<span>obtuse angle is greater than 90 degree
acute angle is less than 90 degree</span>
8 0
3 years ago
Read 2 more answers
How can you prove that csc^2(θ)tan^2(θ)-1=tan^2(θ)
Oxana [17]

Answer:

Make use of the fact that as long as \sin(\theta) \ne 0 and \cos(\theta) \ne 0:

\displaystyle \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}.

\displaystyle \csc(\theta) = \frac{1}{\sin(\theta)}.

\sin^{2}(\theta) + \cos^{2}(\theta) = 1.

Step-by-step explanation:

Assume that \sin(\theta) \ne 0 and \cos(\theta) \ne 0.

Make use of the fact that \tan(\theta) = (\sin(\theta)) / (\cos(\theta)) and \csc(\theta) = (1) / (\sin(\theta)) to rewrite the given expression as a combination of \sin(\theta) and \cos(\theta).

\begin{aligned}& \csc^{2}(\theta) \, \tan^{2}(\theta) - 1\\ =\; & \left(\frac{1}{\sin(\theta)}\right)^{2} \, \left(\frac{\sin(\theta)}{\cos(\theta)}\right)^{2} - 1 \\ =\; & \frac{\sin^{2}(\theta)}{\sin^{2}(\theta)\, \cos^{2}(\theta)} - 1\\ =\; & \frac{1}{\cos^{2}(\theta)} - 1\end{aligned}.

Since \cos(\theta) \ne 0:

\displaystyle 1 = \frac{\cos^{2}(\theta)}{\cos^{2}(\theta)}.

Substitute this equality into the expression:

\begin{aligned}& \csc^{2}(\theta) \, \tan^{2}(\theta) - 1\\ =\; & \cdots\\ =\; & \frac{1}{\cos^{2}(\theta)} - 1 \\ =\; & \frac{1}{\cos^{2}(\theta)} - \frac{\cos^{2}(\theta)}{\cos^{2}(\theta)} \\ =\; & \frac{1 - \cos^{2}(\theta)}{\cos^{2}(\theta)}\end{aligned}.

By the Pythagorean identity, \sin^{2}(\theta) + \cos^{2}(\theta) = 1. Rearrange this identity to obtain:

\sin^{2}(\theta) = 1 - \cos^{2}(\theta).

Substitute this equality into the expression:

\begin{aligned}& \csc^{2}(\theta) \, \tan^{2}(\theta) - 1\\ =\; & \cdots \\ =\; & \frac{1 - \cos^{2}(\theta)}{\cos^{2}(\theta)} \\ =\; & \frac{\sin^{2}(\theta)}{\cos^{2}(\theta)}\end{aligned}.

Again, make use of the fact that \tan(\theta) = (\sin(\theta)) / (\cos(\theta)) to obtain the desired result:

\begin{aligned}& \csc^{2}(\theta) \, \tan^{2}(\theta) - 1\\ =\; & \cdots \\ =\; & \frac{\sin^{2}(\theta)}{\cos^{2}(\theta)}\\ =\; & \left(\frac{\sin(\theta)}{\cos(\theta)}\right)^{2} \\ =\; & \tan^{2}(\theta)\end{aligned}.

5 0
2 years ago
From the given angle measurements, you can’t directly find the measure of angle L. However, you can find the measurement of angl
DaniilM [7]

The measurement of angle L = 50°.

Solution:

The given image is a rectangle.

The measurement of ∠A = 25°

The measurement of ∠B = 25°

ABC is a triangle.

Sum of the interior angles of the triangle = 180°

⇒ m∠A + m∠B + m∠C = 180°

⇒ 25° + 25° + m∠C = 180°

⇒ 50° + m∠C = 180°

⇒ m∠C = 180° – 50°

⇒ m∠C = 130°

Sum of the adjacent angles in a straight line = 180°

⇒ m∠C + m∠L = 180°

⇒ 130°  + m∠L = 180°

⇒ m∠L = 180° – 130°

⇒ m∠L = 50°

Hence the measurement of angle L = 50°.

8 0
3 years ago
Read 2 more answers
How do you round 30.92 in a whole number
wolverine [178]
It would round up to 31 because the decimal place is greater than 5
6 0
4 years ago
Read 2 more answers
What is the answer to 3(2b-1)
emmainna [20.7K]
You need to distribute the 3, so your answer would be 6b-3
4 0
3 years ago
Read 2 more answers
Other questions:
  • A 90% confidence interval for the mean percentage of airline reservations being canceled on the day of the flight is (1.1%, 3.2%
    15·2 answers
  • Model the pair of situations
    5·1 answer
  • Please help me solve this problem
    10·1 answer
  • Which graph shows the solution to the system of linear inequalities? 2x -3y ≤ 12 y &lt; -3
    6·1 answer
  • Which polynomial identity will prove that 49 - 4 = 45?
    12·2 answers
  • What is the factored form of the expression 5p^3-10p^2+3p-6
    6·2 answers
  • (3.1 x 10¹⁵) + (3.7 x 10¹³) in simplified form. Please hurry​
    10·2 answers
  • Simplify 7-5x-(3+5x)
    8·1 answer
  • Identify the two equations that have no solution?
    13·1 answer
  • I want pictures of how you did it on paper!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!