A) maximum mean weight of passengers = <span>load limit ÷ number of passengers
</span><span>
maximum mean weight of passengers = 3750 </span>÷ 25 = <span>150lb
</span>B) First, find the z-score:
z = (value - mean) / stdev
= (150 - 199) / 41
= -1.20
We need to find P(z > -1.20) = 1 - P(z < -1.20)
Now, look at a standard normal table to find <span>P(z < -1.20) = 0.11507, therefore:
</span>P(z > -1.20) = 1 - <span>0.11507 = 0.8849
Hence, <span>the probability that the mean weight of 25 randomly selected skiers exceeds 150lb is about 88.5%</span> </span>
C) With only 20 passengers, the new maximum mean weight of passengers = 3750 ÷ 20 = <span>187.5lb
Let's repeat the steps of point B)
z = (187.5 - 199) / 41
= -0.29
P(z > -0.29) = 1 - P(z < -0.29) = 1 - 0.3859 = 0.6141
</span>Hence, <span>the probability that the mean weight of 20 randomly selected skiers exceeds 187.5lb is about 61.4%
D) The mean weight of skiers is 199lb, therefore:
number</span> of passengers = <span>load limit ÷ <span>mean weight of passengers
= 3750 </span></span><span>÷ 199
= 18.8
The new capacity of 20 skiers is safer than 25 skiers, but we cannot consider it safe enough, since the maximum capacity should be of 18 skiers.</span>
If you would like to know if is 5/12 greater than 0.44, you can calculate this using the following step:
0.44 = 44/100 = 11/25 = 132/300
5/12 = 125/300
Result: 0.44 is greater than 5/12 (0.44 = 132/300 > 5/12 = 125/300).
Answer:
12 is 6 times larger than 2
Step-by-step explanation:
2*6=12
Answer: 5x 5y
Step-by-step explanation: because of the length
Answer:
C
Step-by-step explanation:
The quotient is 18