Uhh yes it is wayyy before 2,589 I believe
Answer:
a. P(X=50)= 0.36
b. P(X≤75) = 0.9
c. P(X>50)= 0.48
d. P(X<100) = 0.9
Step-by-step explanation:
The given data is
x 25 50 75 100 Total
P(x) 0.16 0.36 0.38 0.10 1.00
Where X is the variable and P(X) = probabililty of that variable.
From the above
a. P(X=50)= 0.36
We add the probabilities of the variable below and equal to 75
b. P(X≤75) = 0.16+ 0.36+ 0.38= 0.9
We find the probability of the variable greater than 50 and add it.
c. P(X>50)= 0.38+0.10= 0.48
It can be calculated in two ways. One is to subtract the probability of 100 from total probability of 1. And the other is to add the probabilities of all the variables less than 100 . Both would give the same answer.
d. P(X<100)= 1- P(X=100)= 1-0.1= 0.9
Answer:
The equations 3·x - 6·y = 9 and x - 2·y = 3 are the same
The possible solution are the points (infinite) on the line of the graph representing the equation 3·x - 6·y = 9 or x - 2·y = 3 which is the same line
Step-by-step explanation:
The given linear equations are;
3·x - 6·y = 9...(1)
x - 2·y = 3...(2)
The solution of a system of two linear equations with two unknowns can be found graphically by plotting the two equations and finding the coordinates of the point of intersection of the line graphs
Making 'y' the subject of both equations gives;
For equation (1);
3·x - 6·y = 9
3·x - 9 = 6·y
y = x/2 - 3/2
For equation (2);
x - 2·y = 3
x - 3 = 2·y
y = x/2 - 3/2
We observe that the two equations are the same and will have an infinite number of solutions
Answer:
Infinitely many
Step-by-step explanation:
12x+1=3(4x+1)-2
Expand 3(4x+1)-2
12x+3-2
12x+1
12x+1=12x+1
Simplify.
0=0
True for all values of x
Answer:
A) $1470
B) 5,88%
Step-by-step explanation:
B) Diana will end up with 100% -16% = 84% of the interest she earns, so her effective interest rate is ...
... 7% × 84% = 5.88%
A) Diana's investment earns ...
... 0.0588 × $25000 = $1470