It looks like your equations are
7M - 2t = -30
5t - 12M = 115
<u>Solving by substitution</u>
Solve either equation for one variable. For example,
7M - 2t = -30 ⇒ t = (7M + 30)/2
Substitute this into the other equation and solve for M.
5 × (7M + 30)/2 - 12M = 115
5 (7M + 30) - 24M = 230
35M + 150 - 24M = 230
11M = 80
M = 80/11
Now solve for t.
t = (7 × (80/11) + 30)/2
t = (560/11 + 30)/2
t = (890/11)/2
t = 445/11
<u>Solving by elimination</u>
Multiply both equations by an appropriate factor to make the coefficients of one of the variables sum to zero. For example,
7M - 2t = -30 ⇒ -10t + 35M = -150 … (multiply by 5)
5t - 12M = 115 ⇒ 10t - 24M = 230 … (multiply by 2)
Now combining the equations eliminates the t terms, and
(-10t + 35M) + (10t - 24M) = -150 + 230
11M = 80
M = 80/11
It follows that
7 × (80/11) - 2t = -30
560/11 - 2t = -30
2t = 890/11
t = 445/11
Answer:
x is EQUIVALENT to 2.89
Step-by-step explanation:
<span>The play costs $1,200 in expenses.
The students charge $4.00 for tickets.
</span>f(x) = 4x - 1200
<span>seats 500 people
</span>so
the domain for x is from 0 to 500
so answer should be
<span>the domain of the functio</span>n is all real numbers from 0 to 500
Hope it helps
Answer: the answer is 8
Step-by-step explanation:
-6 + 8 = 2 (y)
Answer:
<em>Do</em><em> </em><em>2.78</em><em>×</em><em>103</em><em> </em><em>=</em><em> </em><em>286.34</em><em> </em>
Step-by-step explanation:
<em>In</em><em> </em><em>standard</em><em> </em><em>form</em><em>:</em><em> </em>
<em>200</em><em>+</em><em>80</em><em>+</em><em>6</em><em>+</em><em>0</em><em>.</em><em>3</em><em>+</em><em>0.04</em><em> </em>
<em>PLEASE</em><em> </em><em>THANK</em><em>,</em><em> </em><em>RATE</em><em> </em><em>AND</em><em> </em><em>FOLLOW</em><em> </em><em>ME</em><em>,</em>
<em>AND</em><em> </em><em>PLEASE</em><em> </em><em>MARK</em><em> </em><em>ME</em><em> </em><em>AS</em><em> </em><em>"</em><em>BRAINLIEST</em><em>"</em><em> </em><em>ANSWER</em><em> </em>
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELPS</em><em> </em><em>YOU</em><em> </em>