D. 1/3
A cube root can be written as an exponent: 1/3
![\sqrt[3]{x} = x^{\frac{1}{3} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D)
In a quadratic equation
q(x) = ax^2 + bx + c
The discriminant is = b^2 - 4ac
We have that discriminant = 3
If
b^2 - 4ac > 0, then the roots are real.
If
b^2 - 4ac < 0 then the roots are imaginary
<span>In
this problem b^2 - 4ac > 0 3 > 0 </span>
then
the two roots must be real
The answer is D because you can multiply the second equation by -4
The correct question is
<span>In a circle with a radius of 3 ft, an arc is intercepted by a central angle of 2π/3 radians. What is the length of the arc?
we know that
in a circle
</span>2π radians -----------------> lenght of (2*π*r)
2π/3 radians--------------> X
X=[(2π/3)*(2π*r)]/[2π]=(2π/3)*r
the lenght of the arc=(2π/3)*3=2π ft
the answer is 2π ft