<h2>

</h2>
Two bikers are riding a circular path.
The first rider completes a round in 12
minutes. The second rider completes
a round in 18 minutes. If they both
started at the same place and time
and go in the same direction, after
how many minutes will they meet
again at the starting point?
<h2>

</h2>

- First rider takes 12 minutes to complete a round.
- Second rider takes 18 minutes to complete a round.

After how many minutes will they meet
again at the starting point?
Take the LCM of 12 and 18
12 = 2 × 2 × 3
18 = 2 × 3 × 3
Thus, the LCM of 12 and 18 is 36.
<h3>So they will meet after 36 minutes again at the starting point.</h3>
Answer:
equation: 8-n=13
answer: n = 21
Step-by-step explanation:
Answer:
x = -8
Step-by-step explanation:
Isolate the variable, x. Note the equal sign, what you do to one side, you do to the other. Do the opposite of PEMDAS.
First, subtract 12 from both sides:
3x + 12 (-12) = -12 (-12)
3x = -12 - 12
3x = -24
Next, divide 3 from both sides:
(3x)/3 = (-24)/3
x = -24/3
x = -8
x = -8 is your answer.
~
Answer:
3.
Step-by-step explanation:
4$ = 1 pack
(think: what times 4 is 12? 3! so we need to muliply both sides of the equal sign by 3, so we can turn the 4 into a 12. Remember, what you do to on side, you must do to the other. )
4$ = 1 pack
*3 *3
12$ = 3 packs
so your answer is 3.