Answer:
x= -1/2 = -0.500
x=4
Step-by-step explanation:
2x^2-7x-4=0
2x^2-8x+1x-4=0
2x(x-4)+1(x-4)=0
(2x+1)(x-4)=0
2x+1=0...2x= -1.. x= -1/2 x-4=0 .. x=4
checking the solution
2(-1/2)^2-7(-1/2)=4..... 4=4
2(4)^2-7(4)=4....... 4=4
Answer: 30 goldfish
Step-by-step explanation: Bruce has 18 goldfish. If Isabelle has 5 times as many goldfish as Bruce she will have 18*5=90 goldfish. If Arlene has 1/3 times as many goldfish as Isabelle she will have 90/3=30 goldfish.
We will use demonstration of recurrences<span>1) for n=1, 10= 5*1(1+1)=5*2=10, it is just
2) assume that the equation </span>10 + 30 + 60 + ... + 10n = 5n(n + 1) is true, <span>for all positive integers n>=1
</span>3) let's show that the equation<span> is also true for n+1, n>=1
</span><span>10 + 30 + 60 + ... + 10(n+1) = 5(n+1)(n + 2)
</span>let be N=n+1, N is integer because of n+1, so we have
<span>10 + 30 + 60 + ... + 10N = 5N(N+1), it is true according 2)
</span>so the equation<span> is also true for n+1,
</span>finally, 10 + 30 + 60 + ... + 10n = 5n(n + 1) is always true for all positive integers n.
<span>
</span>
In order to answer this, we need an image to be able to see what they look like.
Answer:
![\boxed{-3xy^{2}\sqrt [3] {2x^{2}}}](https://tex.z-dn.net/?f=%5Cboxed%7B-3xy%5E%7B2%7D%5Csqrt%20%5B3%5D%20%7B2x%5E%7B2%7D%7D%7D)
Step-by-step explanation:
Your expression is
![\sqrt [3] {-54x^{5}y^{6}}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B-54x%5E%7B5%7Dy%5E%7B6%7D%7D)
Here's how I would simplify it.
![\begin{array}{rcll}\sqrt [3] {-54x^{5}y^{6}} & = & \sqrt [3] {(-1)^{3}\times 2 \times 27 \times x^{2} \times x^{3} \times y^{6}} & \text{Factored the cubes}\\& = & \sqrt [3] {(-1)^{3} \times 3^{3}\times x^{3} \times y^{6}\times 2 \times x^{2}} & \text{Grouped the cubes}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcll%7D%5Csqrt%20%5B3%5D%20%7B-54x%5E%7B5%7Dy%5E%7B6%7D%7D%20%26%20%3D%20%26%20%5Csqrt%20%5B3%5D%20%7B%28-1%29%5E%7B3%7D%5Ctimes%202%20%5Ctimes%2027%20%5Ctimes%20x%5E%7B2%7D%20%5Ctimes%20x%5E%7B3%7D%20%5Ctimes%20y%5E%7B6%7D%7D%20%26%20%5Ctext%7BFactored%20the%20cubes%7D%5C%5C%26%20%3D%20%26%20%5Csqrt%20%5B3%5D%20%7B%28-1%29%5E%7B3%7D%20%5Ctimes%203%5E%7B3%7D%5Ctimes%20x%5E%7B3%7D%20%5Ctimes%20y%5E%7B6%7D%5Ctimes%202%20%5Ctimes%20x%5E%7B2%7D%7D%20%26%20%5Ctext%7BGrouped%20the%20cubes%7D%5C%5C%5Cend%7Barray%7D)
![\begin{array}{rcll}& = & \sqrt [3] {(-1)^{3} \times {3^{3}\times x^{3} \times y^{6}}} \times\sqrt [3] { 2 \times x^{2}} & \text{Separated the cubes}\\&=& \mathbf{-3xy^{2}\sqrt [3] {2x^{2}}} & \text{Took cube roots}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcll%7D%26%20%3D%20%26%20%5Csqrt%20%5B3%5D%20%7B%28-1%29%5E%7B3%7D%20%5Ctimes%20%7B3%5E%7B3%7D%5Ctimes%20x%5E%7B3%7D%20%5Ctimes%20y%5E%7B6%7D%7D%7D%20%5Ctimes%5Csqrt%20%5B3%5D%20%7B%202%20%5Ctimes%20x%5E%7B2%7D%7D%20%26%20%5Ctext%7BSeparated%20the%20cubes%7D%5C%5C%26%3D%26%20%5Cmathbf%7B-3xy%5E%7B2%7D%5Csqrt%20%5B3%5D%20%7B2x%5E%7B2%7D%7D%7D%20%26%20%5Ctext%7BTook%20cube%20roots%7D%5C%5C%5Cend%7Barray%7D)
![\text{The simplified expression is $\boxed{\mathbf{-3xy^{2}\sqrt [3] {2x^{2}}}}$}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20simplified%20expression%20is%20%24%5Cboxed%7B%5Cmathbf%7B-3xy%5E%7B2%7D%5Csqrt%20%5B3%5D%20%7B2x%5E%7B2%7D%7D%7D%7D%24%7D)