Answer:
This contradicts the Mean Value Theorem since there exists a c on (1, 7) such that f '(c) = f(7) − f(1) (7 − 1) , but f is not continuous at x = 3
Step-by-step explanation:
The given function is

When we differentiate this function with respect to x, we get;

We want to find all values of c in (1,7) such that f(7) − f(1) = f '(c)(7 − 1)
This implies that;




![c-3=\sqrt[3]{63.15789}](https://tex.z-dn.net/?f=c-3%3D%5Csqrt%5B3%5D%7B63.15789%7D)
![c=3+\sqrt[3]{63.15789}](https://tex.z-dn.net/?f=c%3D3%2B%5Csqrt%5B3%5D%7B63.15789%7D)

If this function satisfies the Mean Value Theorem, then f must be continuous on [1,7] and differentiable on (1,7).
But f is not continuous at x=3, hence this hypothesis of the Mean Value Theorem is contradicted.
Largest exponent in a polynomial is called it’s Degree
Let
. Then differentiating, we get

We approximate
at
with the tangent line,

The
-intercept for this approximation will be our next approximation for the root,

Repeat this process. Approximate
at
.

Then

Once more. Approximate
at
.

Then

Compare this to the actual root of
, which is approximately <u>1.76929</u>2354, matching up to the first 5 digits after the decimal place.
Check the picture below. You can pretty much just count the units off the grid.
Answer:d=5/3x
Step-by-step explanation:
Let's solve for d.
(2/3x)(d)=10/9
Step 1: Divide both sides by (2x)/3.
2/3dx / 2x/3=10/9 / 2x/3
d=5/3x