Answer:
2 .The slope of Function A is less than the slope of Function B
Step-by-step explanation:
A graph of Function A shows it has a y-intercept of 4, the same as that of Function B. (Statements 3 and 4 are not correct.)
The slope of Function A is 2, which is less than the slope of 3 that Function B has. (Statement 2 is correct; statement 1 is not.)
_____
<em>More detailed working</em>
The slope of Function A can be figured easily between the points with x-values that differ by 1:
m = (y3 -y2)/(x3 -x2) = (24-22)/(10-9) = 2/1 = 2 . . . . . Fun A has slope of 2.
The slope of Function B is the coefficient of x in the equation: 3.
__
The y-intercept of Function A can be found starting with point-slope form:
y -22 = 2(x -9)
y = 2x -18 +22
y = 2x +4 . . . . . . . slope-intercept form
The intercept of +4 is the same as that of Function B.
Answer:
(-6,-4)
Step-by-step explanation:
The first endpoint of the line is (-6,8), we can call
x_1 = -6
and
y_1 = 8
Let the last endpoint have coordinates (x_2,y_2)
Also, the midpoint formula is:
(x_1+x_2)/2 , (y_1+y_2)/2
Now, plugging these values is the formula, we get:
(-6+x_2)/2 = -6
-6+x_2=-12
x_2=-12+6 = -6
x_2 = -6
Also
(8+y_2)/2=2
8+y_2=4
y_2=4-8=-4
y_2 = -4
The coordinates of the other endpoint is (-6,-4)
Answer:

Step-by-step explanation:


Combine like terms

Define the variables: a is the number of apples I can buy g is the number of grapefruits I can buy.
Write the equation: 15 = 0.50a + 2g
Answer: B
Negative a squared b and 5 a squared b
Step-by-step explanation:
Given that:
Negative a squared b + 6 a b minus 8 + 5 a squared b minus 6 a minus b. That is,
- a^2b + 6ab - 8 + 5a^b - 6a - b
Collecting the like term by rearranging the expression
5a^2b - a^2b + 6ab - 6a - b
The like terms in the expression above are
5a^2b - a^2b.
The correct option is B:
Negative a squared b and 5 a squared b or (-a^2b and 5a^b)