Answer:
S = 128πx² + 64πx + 8π
Step-by-step explanation:
Suraface area of a cylinder is given by:
S = 2πrh + 2πr²
We know that the height is 3 times as big as the radius, hence:
h = 3r
so we can plug in the new h value and rewrite the S equation as:
S = 2πrh + 2πr²
S = 2πr(3r) + 2πr²
S = 6πr² + 2πr²
S = 8πr²
We're given in the question that the radius is (4x + 1) inches, so plug that into r.
Given: r = 4x + 1
Therefore,
S = 8πr²
S = 8π(4x + 1)²
S = 8π(16x²+8x+1)
S = 128πx² + 64πx + 8π
"No, because using the y-axis tests only whether x = 0 is mapped to multiple values." Shayla probably used the wrong method in finding whether the graph is a function or not.
The inequalities which matches the graph are: x ≥ ₋1.5 and ₋1.5 ≤ x
Given, a number line is moving from ₋3 to ₊5 .
Next a mark is made at ₋1.5 and everything to its left is shaded which means not visible.
When we mark the point and shade the left part of it then we can start applying the inequality expressions.
And from that we can match the applicable inequalities while observing the graph.
- For the first inequality ₋1.5 ≥ x.Here,x value ranges from ₋1.5 to ₊5, hence we take this as an inequality expression.
- Next, if we consider x ≤ ₋1.5, then here x value will range from ₋1.5 to ₋3. where the region is shaded. Hence this expression doesn't satisfy the graph.
- the next expression is ₋1.5 ≤ x. here the value will again range in the shaded area so it is not applicable.
- ₋1.5 ≥ x, here the values will satisfy the graph.
- remaining inequality expressions does not support the graph.
Therefore the only inequalities the graph represents is x ≥ ₋1.5 and ₋1.5 ≤ x
Learn more about "Linear Inequalities" here-
brainly.com/question/371134
#SPJ10
Given:
The two way table.
To find:
The conditional probability of P(Drive to school | Senior).
Solution:
The conditional probability is defined as:

Using this formula, we get
...(i)
From the given two way table, we get
Drive to school and senior = 25
Senior = 25+5+5
= 35
Total = 2+25+3+13+20+2+25+5+5
= 100
Now,


Substituting these values in (i), we get




Therefore, the required conditional probability is 0.71.
Let William be x years old.
Thomas = (4 + x) years
In five years,
William = (x + 5) years
Thomas = 4 + x + 5 = (9 + x) years
Given, in five years sum of their ages is 24.
x + 5 + 9 + x = 24
2x + 14 = 24
2x = 24 - 14
2x = 10
x =

x = 5
Hence, William is 5 years old and Thomas is 9 years old.